_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-moveez 1.1.1
Propagated dependencies: r-gpabin@1.1.1 r-ggplot2@4.0.1 r-gganimate@1.0.11 r-dplyr@1.1.4 r-biplotez@2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://muvisu.github.io/moveEZ/
Licenses: Expat
Build system: r
Synopsis: Animated Biplots
Description:

Create animated biplots that enables dynamic visualisation of temporal or sequential changes in multivariate data by animating a single biplot across the levels of a time variable. It builds on objects from the biplotEZ package, Lubbe S, le Roux N, Nienkemper-Swanepoel J, Ganey R, Buys R, Adams Z, Manefeldt P (2024) <doi:10.32614/CRAN.package.biplotEZ>, allowing users to create animated biplots that reveal how both samples and variables evolve over time.

r-msar 0.6.0
Propagated dependencies: r-htmlwidgets@1.6.4 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=msaR
Licenses: FSDG-compatible
Build system: r
Synopsis: Multiple Sequence Alignment for R Shiny
Description:

Visualizes multiple sequence alignments dynamically within the Shiny web application framework.

r-modtools 0.9.13
Propagated dependencies: r-survival@3.8-3 r-sandwich@3.1-1 r-rpart-plot@3.1.4 r-rpart@4.1.24 r-robustbase@0.99-6 r-relaimpo@2.2-7 r-randomforest@4.7-1.2 r-pscl@1.5.9 r-proc@1.19.0.1 r-nnet@7.3-20 r-neuralnettools@1.5.3 r-naivebayes@1.0.0 r-mass@7.3-65 r-lmtest@0.9-40 r-lattice@0.22-7 r-e1071@1.7-16 r-desctools@0.99.60 r-class@7.3-23 r-car@3.1-3 r-c50@0.2.0 r-boot@1.3-32 r-aer@1.2-15
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://andrisignorell.github.io/ModTools/
Licenses: GPL 2+
Build system: r
Synopsis: Building Regression and Classification Models
Description:

Consistent user interface to the most common regression and classification algorithms, such as random forest, neural networks, C5 trees and support vector machines, complemented with a handful of auxiliary functions, such as variable importance and a tuning function for the parameters.

r-mlpugs 0.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/bearloga/MLPUGS
Licenses: Expat
Build system: r
Synopsis: Multi-Label Prediction Using Gibbs Sampling (and Classifier Chains)
Description:

An implementation of classifier chains (CC's) for multi-label prediction. Users can employ an external package (e.g. randomForest', C50'), or supply their own. The package can train a single set of CC's or train an ensemble of CC's -- in parallel if running in a multi-core environment. New observations are classified using a Gibbs sampler since each unobserved label is conditioned on the others. The package includes methods for evaluating the predictions for accuracy and aggregating across iterations and models to produce binary or probabilistic classifications.

r-metaplus 1.0-6
Propagated dependencies: r-rfast@2.1.5.2 r-numderiv@2016.8-1.1 r-metafor@4.8-0 r-mass@7.3-65 r-lme4@1.1-37 r-foreach@1.5.2 r-fastghquad@1.0.1 r-doparallel@1.0.17 r-boot@1.3-32 r-bbmle@1.0.25.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=metaplus
Licenses: GPL 2+
Build system: r
Synopsis: Robust Meta-Analysis and Meta-Regression
Description:

This package performs meta-analysis and meta-regression using standard and robust methods with confidence intervals based on the profile likelihood. Robust methods are based on alternative distributions for the random effect, either the t-distribution (Lee and Thompson, 2008 <doi:10.1002/sim.2897> or Baker and Jackson, 2008 <doi:10.1007/s10729-007-9041-8>) or mixtures of normals (Beath, 2014 <doi:10.1002/jrsm.1114>).

r-mepdf 3.0
Propagated dependencies: r-pracma@2.4.6 r-plyr@1.8.9 r-mvtnorm@1.3-3 r-gtools@3.9.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MEPDF
Licenses: GPL 2
Build system: r
Synopsis: Creation of Empirical Density Functions Based on Multivariate Data
Description:

Based on the input data an n-dimensional cube with sub cells of user specified side length is created. The number of sample points which fall in each sub cube is counted, and with the cell volume and overall sample size an empirical probability can be computed. A number of cubes of higher resolution can be superimposed. The basic method stems from J.L. Bentley in "Multidimensional Divide and Conquer". J. L. Bentley (1980) <doi:10.1145/358841.358850>. Furthermore a simple kernel density estimation method is made available, as well as an expansion of Bentleys method, which offers a kernel approach for the grid method.

r-mpspline2 0.1.9
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/obrl-soil/mpspline2
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Mass-Preserving Spline Functions for Soil Data
Description:

This package provides a low-dependency implementation of GSIF::mpspline() <https://r-forge.r-project.org/scm/viewvc.php/pkg/R/mpspline.R?view=markup&revision=240&root=gsif>, which applies a mass-preserving spline to soil attributes. Splining soil data is a safe way to make continuous down-profile estimates of attributes measured over discrete, often discontinuous depth intervals.

r-mancie 1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MANCIE
Licenses: GPL 2
Build system: r
Synopsis: Matrix Analysis and Normalization by Concordant Information Enhancement
Description:

High-dimensional data integration is a critical but difficult problem in genomics research because of potential biases from high-throughput experiments. We present MANCIE, a computational method for integrating two genomic data sets with homogenous dimensions from different sources based on a PCA procedure as an approximation to a Bayesian approach.

r-metawho 0.2.0
Propagated dependencies: r-rlang@1.1.6 r-purrr@1.2.0 r-metafor@4.8-0 r-magrittr@2.0.4 r-forestmodel@0.6.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ShixiangWang/metawho
Licenses: GPL 3
Build system: r
Synopsis: Meta-Analytical Implementation to Identify Who Benefits Most from Treatments
Description:

This package provides a tool for implementing so called deft approach (see Fisher, David J., et al. (2017) <DOI:10.1136/bmj.j573>) and model visualization.

r-modelmap 3.4.0.8
Propagated dependencies: r-raster@3.6-32 r-randomforest@4.7-1.2 r-presenceabsence@1.1.11 r-mgcv@1.9-4 r-handtill2001@1.0.3 r-fields@17.1 r-corrplot@0.95
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=ModelMap
Licenses: FSDG-compatible
Build system: r
Synopsis: Modeling and Map Production using Random Forest and Related Stochastic Models
Description:

This package creates sophisticated models of training data and validates the models with an independent test set, cross validation, or Out Of Bag (OOB) predictions on the training data. Create graphs and tables of the model validation results. Applies these models to GIS .img files of predictors to create detailed prediction surfaces. Handles large predictor files for map making, by reading in the .img files in chunks, and output to the .txt file the prediction for each data chunk, before reading the next chunk of data.

r-mstem 1.0-1
Propagated dependencies: r-latex2exp@0.9.6 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://arxiv.org/abs/1504.06384
Licenses: GPL 3
Build system: r
Synopsis: Multiple Testing of Local Extrema for Detection of Change Points
Description:

This package provides a new approach to detect change points based on smoothing and multiple testing, which is for long data sequence modeled as piecewise constant functions plus stationary Gaussian noise, see Dan Cheng and Armin Schwartzman (2015) <arXiv:1504.06384>.

r-msimcc 0.0.3
Propagated dependencies: r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mSimCC
Licenses: GPL 2+
Build system: r
Synopsis: Micro Simulation Model for Cervical Cancer Prevention
Description:

Micro simulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies. See Georgalis L, de Sanjose S, Esnaola M, Bosch F X, Diaz M (2016) <doi:10.1097/CEJ.0000000000000202> for more details.

r-mole 1.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MoLE
Licenses: GPL 2
Build system: r
Synopsis: Modeling Language Evolution
Description:

Model for simulating language evolution in terms of cultural evolution (Smith & Kirby (2008) <DOI:10.1098/rstb.2008.0145>; Deacon 1997). The focus is on the emergence of argument-marking systems (Dowty (1991) <DOI:10.1353/lan.1991.0021>, Van Valin 1999, Dryer 2002, Lestrade 2015a), i.e. noun marking (Aristar (1997) <DOI:10.1075/sl.21.2.04ari>, Lestrade (2010) <DOI:10.7282/T3ZG6R4S>), person indexing (Ariel 1999, Dahl (2000) <DOI:10.1075/fol.7.1.03dah>, Bhat 2004), and word order (Dryer 2013), but extensions are foreseen. Agents start out with a protolanguage (a language without grammar; Bickerton (1981) <DOI:10.17169/langsci.b91.109>, Jackendoff 2002, Arbib (2015) <DOI:10.1002/9781118346136.ch27>) and interact through language games (Steels 1997). Over time, grammatical constructions emerge that may or may not become obligatory (for which the tolerance principle is assumed; Yang 2016). Throughout the simulation, uniformitarianism of principles is assumed (Hopper (1987) <DOI:10.3765/bls.v13i0.1834>, Givon (1995) <DOI:10.1075/z.74>, Croft (2000), Saffran (2001) <DOI:10.1111/1467-8721.01243>, Heine & Kuteva 2007), in which maximal psychological validity is aimed at (Grice (1975) <DOI:10.1057/9780230005853_5>, Levelt 1989, Gaerdenfors 2000) and language representation is usage based (Tomasello 2003, Bybee 2010). In Lestrade (2015b) <DOI:10.15496/publikation-8640>, Lestrade (2015c) <DOI:10.1075/avt.32.08les>, and Lestrade (2016) <DOI:10.17617/2.2248195>), which reported on the results of preliminary versions, this package was announced as WDWTW (for who does what to whom), but for reasons of pronunciation and generalization the title was changed.

r-mbsp 5.0
Propagated dependencies: r-mvtnorm@1.3-3 r-mcmcpack@1.7-1 r-gigrvg@0.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MBSP
Licenses: GPL 3
Build system: r
Synopsis: Multivariate Bayesian Model with Shrinkage Priors
Description:

Gibbs sampler for fitting multivariate Bayesian linear regression with shrinkage priors (MBSP), using the three parameter beta normal family. The method is described in Bai and Ghosh (2018) <doi:10.1016/j.jmva.2018.04.010>.

r-mapycusmaximus 1.0.7
Propagated dependencies: r-sf@1.0-23 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://alex-nguyen-vn.github.io/mapycusmaximus/
Licenses: Expat
Build system: r
Synopsis: Focus-Glue-Context Fisheye Transformations for Spatial Visualization
Description:

Focus-glue-context (FGC) fisheye transformations to two-dimensional coordinates and spatial vector geometries. Implements a smooth radial distortion that enlarges a focal region, transitions through a glue ring, and preserves outside context. Methods build on generalized fisheye views and focus+context mapping. For more details see Furnas (1986) <doi:10.1145/22339.22342>, Furnas (2006) <doi:10.1145/1124772.1124921> and Yamamoto et al. (2009) <doi:10.1145/1653771.1653788>.

r-micromapst 3.1.1
Propagated dependencies: r-writexl@1.5.4 r-stringr@1.6.0 r-spdep@1.4-1 r-sf@1.0-23 r-rmapshaper@0.5.0 r-readxl@1.4.5 r-rcolorbrewer@1.1-3 r-labeling@0.4.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=micromapST
Licenses: GPL 2+
Build system: r
Synopsis: Linked Micromap Plots for U. S. and Other Geographic Areas
Description:

This package provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the micromapST function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package with the BuildBorderGroup function. In April of 2022, it was announced that maptools', rgdal', and rgeos R packages would be retired in middle to end of 2023 and removed from the CRAN libraries. The BuildBorderGroup function was dependent on these packages. micromapST functions were not impacted by the retired R packages. Upgrading of BuildBorderGroup function was completed and released with version 3.0.0 on August 10, 2023 using the sf R package. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.

r-mvgps 1.2.2
Propagated dependencies: r-weightit@1.5.1 r-sp@2.2-0 r-rdpack@2.6.4 r-matrixnormal@0.1.1 r-mass@7.3-65 r-geometry@0.5.2 r-gbm@2.2.2 r-cobalt@4.6.2 r-cbps@0.24
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/williazo/mvGPS
Licenses: Expat
Build system: r
Synopsis: Causal Inference using Multivariate Generalized Propensity Score
Description:

This package provides methods for estimating and utilizing the multivariate generalized propensity score (mvGPS) for multiple continuous exposures described in Williams, J.R, and Crespi, C.M. (2020) <arxiv:2008.13767>. The methods allow estimation of a dose-response surface relating the joint distribution of multiple continuous exposure variables to an outcome. Weights are constructed assuming a multivariate normal density for the marginal and conditional distribution of exposures given a set of confounders. Confounders can be different for different exposure variables. The weights are designed to achieve balance across all exposure dimensions and can be used to estimate dose-response surfaces.

r-moqa 2.0.0
Propagated dependencies: r-readr@2.1.6 r-psych@2.5.6 r-gplots@3.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MOQA
Licenses: AGPL 3
Build system: r
Synopsis: Basic Quality Data Assurance for Epidemiological Research
Description:

With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The MOQA package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.

r-misprime 0.1.0
Propagated dependencies: r-quadprog@1.5-8 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=misPRIME
Licenses: GPL 3
Build system: r
Synopsis: Partial Replacement Imputation Estimation for Missing Covariates
Description:

Partial Replacement Imputation Estimation (PRIME) can overcome problems caused by missing covariates in additive partially linear model. PRIME conducts imputation and regression simultaneously with known and unknown model structure. More details can be referred to Zishu Zhan, Xiangjie Li and Jingxiao Zhang. (2022) <arXiv:2205.14994>.

r-mrstdlcrt 0.1.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-rlang@1.1.6 r-reformulas@0.4.2 r-lme4@1.1-37 r-ggplot2@4.0.1 r-gee@4.13-29 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MRStdLCRT
Licenses: Expat
Build system: r
Synopsis: Model-Robust Standardization for Longitudinal Cluster-Randomized Trials
Description:

This package provides estimation and leave-one-cluster-out jackknife standard errors for four longitudinal cluster-randomized trial estimands: horizontal individual average treatment effect (h-iATE), horizontal cluster average treatment effect (h-cATE), vertical individual average treatment effect (v-iATE), and vertical cluster-period average treatment effect (v-cATE), using unadjusted and augmented (model-robust standardization) estimators. The working model may be fit using linear mixed models for continuous outcomes or generalized estimating equations and generalized linear mixed models for binary outcomes. Period inclusion for aggregation is determined automatically: only periods with both treated and control clusters are included in the construction of the marginal means and treatment effect contrasts. See Fang et al. (2025) <doi:10.48550/arXiv.2507.17190>.

r-mnet 0.1.4
Propagated dependencies: r-mlvar@0.5.5 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mnet
Licenses: GPL 2
Build system: r
Synopsis: Modeling Group Differences and Moderation Effects in Statistical Network Models
Description:

This package provides a toolbox for modeling manifest and latent group differences and moderation effects in various statistical network models.

r-multiobjmatch 1.0.0
Propagated dependencies: r-rlemon@0.2.1 r-rlang@1.1.6 r-rcurl@1.98-1.17 r-rcbalance@1.8.8 r-plyr@1.8.9 r-optmatch@0.10.8 r-matchmulti@1.1.14 r-mass@7.3-65 r-gtools@3.9.5 r-ggplot2@4.0.1 r-fields@17.1 r-dplyr@1.1.4 r-cobalt@4.6.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MultiObjMatch
Licenses: Expat
Build system: r
Synopsis: Multi-Objective Matching Algorithm
Description:

Matching algorithm based on network-flow structure. Users are able to modify the emphasis on three different optimization goals: two different distance measures and the number of treated units left unmatched. The method is proposed by Pimentel and Kelz (2019) <doi:10.1080/01621459.2020.1720693>. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.

r-microbiomesurv 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-survminer@0.5.1 r-survival@3.8-3 r-superpc@1.12 r-pls@2.8-5 r-microbiome@1.32.0 r-lmtest@0.9-40 r-gplots@3.2.0 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/N-T-Huyen/MicrobiomeSurv
Licenses: GPL 3
Build system: r
Synopsis: Biomarker Validation for Microbiome-Based Survival Classification and Prediction
Description:

An approach to identify microbiome biomarker for time to event data by discovering microbiome for predicting survival and classifying subjects into risk groups. Classifiers are constructed as a linear combination of important microbiome and treatment effects if necessary. Several methods were implemented to estimate the microbiome risk score such as the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3>, Elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, supervised principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9>, and supervised partial least squares analysis by Inge S. Helland <https://www.jstor.org/stable/4616159>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected microbiome and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique.

r-mutualinf 2.0.4
Propagated dependencies: r-runner@0.4.4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/RafaelFuentealbaC/mutualinf
Licenses: GPL 3
Build system: r
Synopsis: Computation and Decomposition of the Mutual Information Index
Description:

The Mutual Information Index (M) introduced to social science literature by Theil and Finizza (1971) <doi:10.1080/0022250X.1971.9989795> is a multigroup segregation measure that is highly decomposable and that according to Frankel and Volij (2011) <doi:10.1016/j.jet.2010.10.008> and Mora and Ruiz-Castillo (2011) <doi:10.1111/j.1467-9531.2011.01237.x> satisfies the Strong Unit Decomposability and Strong Group Decomposability properties. This package allows computing and decomposing the total index value into its "between" and "within" terms. These last terms can also be decomposed into their contributions, either by group or unit characteristics. The factors that produce each "within" term can also be displayed at the user's request. The results can be computed considering a variable or sets of variables that define separate clusters.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283