Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Weakly supervised (WS), multiple instance (MI) data lives in numerous interesting applications such as drug discovery, object detection, and tumor prediction on whole slide images. The mildsvm package provides an easy way to learn from this data by training Support Vector Machine (SVM)-based classifiers. It also contains helpful functions for building and printing multiple instance data frames. The core methods from mildsvm come from the following references: Kent and Yu (2024) <doi:10.1214/24-AOAS1876>; Xiao, Liu, and Hao (2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012) <https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>; Chu and Keerthi (2007) <doi:10.1162/neco.2007.19.3.792>; and Andrews et al. (2003) <https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf>. Many functions use the Gurobi optimization back-end to improve the optimization problem speed; the gurobi R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
This package provides a range of functions for computing both global and local mark correlation functions for spatial point patterns in either Euclidean spaces or on linear networks, with points carrying either real-valued or function-valued marks. For a review of mark correlation functions, see Eckardt and Moradi (2024) <doi:10.1007/s13253-024-00605-1>.
Fit Maximum Entropy Optimality Theory models to data sets, generate the predictions made by such models for novel data, and compare the fit of different models using a variety of metrics. The package is described in Mayer, C., Tan, A., Zuraw, K. (in press) <https://sites.socsci.uci.edu/~cjmayer/papers/cmayer_et_al_maxent_ot_accepted.pdf>.
This package implements methods for processing a sample of (hard) clusterings, e.g. the MCMC output of a Bayesian clustering model. Among them are methods that find a single best clustering to represent the sample, which are based on the posterior similarity matrix or a relabelling algorithm.
Measures niche breadth and overlap of microbial taxa from large matrices. Niche breadth measurements include Levins niche breadth (Bn) index, Hurlbert's Bn and Feinsinger's proportional similarity (PS) index. (Feinsinger, P., Spears, E.E., Poole, R.W. (1981) <doi:10.2307/1936664>). Niche overlap measurements include Levin's Overlap (Ludwig, J.A. and Reynolds, J.F. (1988, ISBN:0471832359)) and a Jaccard similarity index of Feinsinger's PS values between taxa pairs, as Proportional Overlap.
Perform library searches against electron ionization mass spectral databases using either the API provided by MS Search software (<https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:nistlibs>) or custom implementations of the Identity and Similarity algorithms.
Maximum a posteriori (MAP) estimation for topic models (i.e., Latent Dirichlet Allocation) in text analysis, as described in Taddy (2012) On estimation and selection for topic models'. Previous versions of this code were included as part of the textir package. If you want to take advantage of openmp parallelization, uncomment the relevant flags in src/MAKEVARS before compiling.
In breeding experiments, mating environmental (ME) designs are very popular as mating designs are directly implemented in the field environment using block or row-column designs. Here, three functions are given related to three new methods which will generate mating diallel cross designs (Hinkelmann and Kempthorne, 1963<doi:10.2307/2333899>) or mating environmental (ME) designs along with design parameters, C matrix, eigenvalues (EVs), degree of fractionations (DF) and canonical efficiency factor (CEF). Another one function is added to check the properties of a given ME diallel cross design.
This package provides a user-friendly interface for the construction of Makefiles'.
This package provides functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi: 10.18637/jss.v054.i12>, Cabral, Lachos and Prates (2012) <doi:10.1016/j.csda.2011.06.026> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016/j.csda.2009.09.031>.
Estimating wind speed from trajectories of individually tracked birds using a maximum likelihood approach.
Large collection of multilabel datasets along with the functions needed to export them to several formats, to make partitions, and to obtain bibliographic information.
Facilitate tasks typically encountered during metabolomics data analysis including data import, filtering, missing value imputation (Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>, Stekhoven et al. (2012) <doi:10.1093/bioinformatics/btr597>, Tibshirani et al. (2017) <doi:10.18129/B9.BIOC.IMPUTE>, Troyanskaya et al. (2001) <doi:10.1093/bioinformatics/17.6.520>), normalization (Bolstad et al. (2003) <doi:10.1093/bioinformatics/19.2.185>, Dieterle et al. (2006) <doi:10.1021/ac051632c>, Zhao et al. (2020) <doi:10.1038/s41598-020-72664-6>) transformation, centering and scaling (Van Den Berg et al. (2006) <doi:10.1186/1471-2164-7-142>) as well as statistical tests and plotting. metamorphr introduces a tidy (Wickham et al. (2019) <doi:10.21105/joss.01686>) format for metabolomics data and is designed to make it easier to build elaborate analysis workflows and to integrate them with tidyverse packages including dplyr and ggplot2'.
This package performs causal mediation analysis for count and zero-inflated count data without or with a post-treatment confounder; calculates power to detect prespecified causal mediation effects, direct effects, and total effects; performs sensitivity analysis when there is a treatment- induced mediator-outcome confounder as described by Cheng, J., Cheng, N.F., Guo, Z., Gregorich, S., Ismail, A.I., Gansky, S.A. (2018) <doi:10.1177/0962280216686131>. Implements Instrumental Variable (IV) method to estimate the controlled (natural) direct and mediation effects, and compute the bootstrap Confidence Intervals as described by Guo, Z., Small, D.S., Gansky, S.A., Cheng, J. (2018) <doi:10.1111/rssc.12233>. This software was made possible by Grant R03DE028410 from the National Institute of Dental and Craniofacial Research, a component of the National Institutes of Health.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Model fitting and simulation for Gaussian and logistic inner product MultiNeSS models for multiplex networks. The package implements a convex fitting algorithm with fully adaptive parameter tuning, including options for edge cross-validation. For more details see MacDonald et al. (2020).
An S4 implementation of the unbiased extension of the model- assisted synthetic-regression estimator proposed by Mandallaz (2013) <DOI:10.1139/cjfr-2012-0381>, Mandallaz et al. (2013) <DOI:10.1139/cjfr-2013-0181> and Mandallaz (2014) <DOI:10.1139/cjfr-2013-0449>. It yields smaller variances than the standard bias correction, the generalised regression estimator.
Calculates mean cumulative count (MCC) to estimate the expected cumulative number of recurrent events per person over time in the presence of competing risks and censoring. Implements both the Dong-Yasui equation method and sum of cumulative incidence method described in Dong, et al. (2015) <doi:10.1093/aje/kwu289>. Supports inverse probability weighting for causal inference as outlined in Gaber, et al. (2023) <doi:10.1093/aje/kwad031>. Provides S3 methods for printing, summarizing, plotting, and extracting results. Handles grouped analyses and integrates with ggplot2 <https://ggplot2.tidyverse.org/> for visualization.
This package implements model-robust standardization for cluster-randomized trials (CRTs). Provides functions that standardize user-specified regression models to estimate marginal treatment effects. The targets include the cluster-average and individual-average treatment effects, with utilities for variance estimation and example simulation datasets. Methods are described in Li, Tong, Fang, Cheng, Kahan, and Wang (2025) <doi:10.1002/sim.70270>.
Correlates variation within the meta-genome to target species phenotype variations in meta-genome with association studies. Follows the pipeline described in Chaston, J.M. et al. (2014) <doi:10.1128/mBio.01631-14>.
Count data is prevalent and informative, with widespread application in many fields such as social psychology, personality, and public health. Classical statistical methods for the analysis of count outcomes are commonly variants of the log-linear model, including Poisson regression and Negative Binomial regression. However, a typical problem with count data modeling is inflation, in the sense that the counts are evidently accumulated on some integers. Such an inflation problem could distort the distribution of the observed counts, further bias estimation and increase error, making the classic methods infeasible. Traditional inflated value selection methods based on histogram inspection are easy to neglect true points and computationally expensive in addition. Therefore, we propose a multiple-inflated negative binomial model to handle count data modeling with multiple inflated values, achieving data-driven inflated value selection. The proposed approach provides simultaneous identification of important regression predictors on the target count response as well. More details about the proposed method are described in Li, Y., Wu, M., Wu, M., & Ma, S. (2023) <arXiv:2309.15585>.
This package provides a series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.
Fast simulation from ordinary differential equation (ODE) based models typically employed in quantitative pharmacology and systems biology.
The Society of Actuaries (SOA) provides an extensive online database called Mortality and Other Rate Tables ('MORT') at <https://mort.soa.org/>. This database contains mortality, lapse, and valuation tables that cover a variety of product types and nations. Users of the database can download any tables in Excel', CSV', or XML formats. This package provides convenience functions that read XML formats from the database and return R objects.