Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compute bootstrap confidence intervals for the adjusted Schnabel and Schumacher-Eschmeyer multi-visit mark-recapture estimators based on Dettloff (2023) <doi:10.1016/j.fishres.2023.106756>.
This package provides install functions of other languages such as java', python'.
Mine metrics on common places on the web through the power of their APIs (application programming interfaces). It also helps make the data in a format that is easily used for a dashboard or other purposes. There is an associated dashboard template and tutorials that are underdevelopment that help you fully utilize metricminer'.
Uses multiple AUCs to select a combination of predictors when the outcome has multiple (ordered) levels and the focus is discriminating one particular level from the others. This method is most naturally applied to settings where the outcome has three levels. (Meisner, A, Parikh, CR, and Kerr, KF (2017) <http://biostats.bepress.com/uwbiostat/paper423/>.).
Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. MiscMetabar is mainly built on top of the phyloseq', dada2 and targets R packages. It helps to build reproducible and robust bioinformatics pipelines in R. MiscMetabar makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.
Deep Learning library that extends the mlr3 framework by building upon the torch package. It allows to conveniently build, train, and evaluate deep learning models without having to worry about low level details. Custom architectures can be created using the graph language defined in mlr3pipelines'.
Large collection of multilabel datasets along with the functions needed to export them to several formats, to make partitions, and to obtain bibliographic information.
Map image classification efficacy (MICE) adjusts the accuracy rate relative to a random classification baseline (Shao et al. (2021)<doi:10.1109/ACCESS.2021.3116526> and Tang et al. (2024)<doi:10.1109/TGRS.2024.3446950>). Only the proportions from the reference labels are considered, as opposed to the proportions from the reference and predictions, as is the case for the Kappa statistic. This package offers means to calculate MICE and adjusted versions of class-level user's accuracy (i.e., precision) and producer's accuracy (i.e., recall) and F1-scores. Class-level metrics are aggregated using macro-averaging. Functions are also made available to estimate confidence intervals using bootstrapping and statistically compare two classification results.
The ultimate goal is to support 2-2-1, 2-1-1, and 1-1-1 models for multilevel mediation, the option of a moderating variable for either the a, b, or both paths, and covariates. Currently the 1-1-1 model is supported and several options of random effects; the initial code for bootstrapping was evaluated in simulations by Falk, Vogel, Hammami, and MioÄ eviÄ (2024) <doi:10.3758/s13428-023-02079-4>. Support for Bayesian estimation using brms comprises ongoing work. Currently only continuous mediators and outcomes are supported. Factors for any predictors must be numerically represented.
Estimates the multi-level vector autoregression model on time-series data. Three network structures are obtained: temporal networks, contemporaneous networks and between-subjects networks.
Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.
The user must supply a matrix filled with similarity values. The software will search for significant differences between similarity values at different hierarchical levels. The algorithm will return a Loess-smoothed plot of the similarity values along with the inflection point, if there are any. There is the option to search for an inflection point within a specified range. The package also has a function that will return the matrix components at a specified cutoff. References: Mullner. <ArXiv:1109.2378>; Cserhati, Carter. (2020, Journal of Creation 34(3):41-50), <https://dl0.creation.com/articles/p137/c13759/j34-3_64-73.pdf>.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
To perform main effect matrix factor model (MEFM) estimation for a given matrix time series as described in Lam and Cen (2024) <doi:10.48550/arXiv.2406.00128>. Estimation of traditional matrix factor models is also supported. Supplementary functions for testing MEFM over factor models are included.
Offers automation tools to parallelize Mplus operations when using R for data generation. It facilitates streamlined integration between Mplus and R', allowing users to run and manage multiple Mplus models simultaneously and efficiently in R'.
This package provides an algorithm for creating mandalas. From the perspective of classic mathematical curves and rigid movements on the plane, the package allows you to select curves and produce mandalas from the curve. The algorithm was developed based on the book by Alcoforado et. al. entitled "Art, Geometry and Mandalas with R" (2022) in press by the USP Open Books Portal.
Identifying important factors from a large number of potentially important factors of a highly nonlinear and computationally expensive black box model is a difficult problem. Xiao, Joseph, and Ray (2022) <doi:10.1080/00401706.2022.2141897> proposed Maximum One-Factor-at-a-Time (MOFAT) designs for doing this. A MOFAT design can be viewed as an improvement to the random one-factor-at-a-time (OFAT) design proposed by Morris (1991) <doi:10.1080/00401706.1991.10484804>. The improvement is achieved by exploiting the connection between Morris screening designs and Monte Carlo-based Sobol designs, and optimizing the design using a space-filling criterion. This work is supported by a U.S. National Science Foundation (NSF) grant CMMI-1921646 <https://www.nsf.gov/awardsearch/showAward?AWD_ID=1921646>.
R package associated with the Multiple Approximate Kernel Learning (MAKL) algorithm proposed in <doi:10.1093/bioinformatics/btac241>. The algorithm fits multiple approximate kernel learning (MAKL) models that are fast, scalable and interpretable.
Several robust estimators for linear regression and variable selection are provided. Included are Maximum tangent likelihood estimator by Qin, et al., (2017), arXiv preprint <doi:10.48550/arXiv.1708.05439>, least absolute deviance estimator and Huber regression. The penalized version of each of these estimator incorporates L1 penalty function, i.e., LASSO and Adaptive Lasso. They are able to produce consistent estimates for both fixed and high-dimensional settings.
This package provides functions and datasets to support Smilde, Næs and Liland (2021, ISBN: 978-1-119-60096-1) "Multiblock Data Fusion in Statistics and Machine Learning - Applications in the Natural and Life Sciences". This implements and imports a large collection of methods for multiblock data analysis with common interfaces, result- and plotting functions, several real data sets and six vignettes covering a range different applications.
Implementation of various statistical models for multivariate event history data <doi:10.1007/s10985-013-9244-x>. Including multivariate cumulative incidence models <doi:10.1002/sim.6016>, and bivariate random effects probit models (Liability models) <doi:10.1016/j.csda.2015.01.014>. Modern methods for survival analysis, including regression modelling (Cox, Fine-Gray, Ghosh-Lin, Binomial regression) with fast computation of influence functions.
Estimates membership for the Mandelbrot set.
Given a vector of multivariate normal data, a matrix of covariates and the data covariance matrix, generate new multivariate normal samples that have the same covariance matrix based on permutations of the transformed data residuals.
Multivariate Adaptive Regression Spline (MARS) based Support Vector Regression (SVR) hybrid model is combined Machine learning hybrid approach which selects important variables using MARS and then fits SVR on the extracted important variables.