_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-messy-cats 1.0
Propagated dependencies: r-varhandle@2.0.6 r-stringr@1.6.0 r-stringdist@0.9.15 r-rapportools@1.2 r-gt@1.3.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=messy.cats
Licenses: Expat
Build system: r
Synopsis: Employs String Distance Tools to Help Clean Categorical Data
Description:

Matching with string distance has never been easier! messy.cats contains various functions that employ string distance tools in order to make data management easier for users working with categorical data. Categorical data, especially user inputted categorical data that often tends to be plagued by typos, can be difficult to work with. messy.cats aims to provide functions that make cleaning categorical data simple and easy.

r-mrct 0.0.1.0
Propagated dependencies: r-robustbase@0.99-6 r-reshape2@1.4.5 r-rdpack@2.6.4 r-ggplot2@4.0.1 r-fdapace@0.6.0 r-fda@6.3.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mrct
Licenses: GPL 2+
Build system: r
Synopsis: Outlier Detection of Functional Data Based on the Minimum Regularized Covariance Trace Estimator
Description:

Detect outlying observations in functional data sets based on the minimum regularized covariance trace (MRCT) estimator. Includes implementation of Oguamalam et al. (2023) <arXiv:2307.13509>.

r-mvtmeta 1.1
Propagated dependencies: r-gtools@3.9.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mvtmeta
Licenses: GPL 3
Build system: r
Synopsis: Multivariate Meta-Analysis
Description:

This package provides functions to run fixed effects or random effects multivariate meta-analysis.

r-modsem 1.0.16
Propagated dependencies: r-stringr@1.6.0 r-rlang@1.1.6 r-rhpcblasctl@0.23-42 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-purrr@1.2.0 r-plotly@4.11.0 r-nlme@3.1-168 r-mvtnorm@1.3-3 r-mvnfast@0.2.8 r-mplusautomation@1.2 r-mass@7.3-65 r-lavaan@0.6-20 r-ggplot2@4.0.1 r-fastghquad@1.0.1 r-dplyr@1.1.4 r-deriv@4.2.0 r-cli@3.6.5 r-amelia@1.8.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://modsem.org
Licenses: Expat
Build system: r
Synopsis: Latent Interaction (and Moderation) Analysis in Structural Equation Models (SEM)
Description:

Estimation of interaction (i.e., moderation) effects between latent variables in structural equation models (SEM). The supported methods are: The constrained approach (Algina & Moulder, 2001). The unconstrained approach (Marsh et al., 2004). The residual centering approach (Little et al., 2006). The double centering approach (Lin et al., 2010). The latent moderated structural equations (LMS) approach (Klein & Moosbrugger, 2000). The quasi-maximum likelihood (QML) approach (Klein & Muthén, 2007) The constrained- unconstrained, residual- and double centering- approaches are estimated via lavaan (Rosseel, 2012), whilst the LMS- and QML- approaches are estimated via modsem it self. Alternatively model can be estimated via Mplus (Muthén & Muthén, 1998-2017). References: Algina, J., & Moulder, B. C. (2001). <doi:10.1207/S15328007SEM0801_3>. "A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3." Klein, A., & Moosbrugger, H. (2000). <doi:10.1007/BF02296338>. "Maximum likelihood estimation of latent interaction effects with the LMS method." Klein, A. G., & Muthén, B. O. (2007). <doi:10.1080/00273170701710205>. "Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects." Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). <doi:10.1080/10705511.2010.488999>. "Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies." Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). <doi:10.1207/s15328007sem1304_1>. "On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables." Marsh, H. W., Wen, Z., & Hau, K. T. (2004). <doi:10.1037/1082-989X.9.3.275>. "Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction." Muthén, L.K. and Muthén, B.O. (1998-2017). "'Mplus Userâ s Guide. Eighth Edition." <https://www.statmodel.com/>. Rosseel Y (2012). <doi:10.18637/jss.v048.i02>. "'lavaan': An R Package for Structural Equation Modeling.".

r-metanlp 0.1.4
Propagated dependencies: r-tm@0.7-16 r-textstem@0.1.4 r-lexicon@1.2.1 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/imbi-heidelberg/MetaNLP
Licenses: Expat
Build system: r
Synopsis: Natural Language Processing for Meta Analysis
Description:

Given a CSV file with titles and abstracts, the package creates a document-term matrix that is lemmatized and stemmed and can directly be used to train machine learning methods for automatic title-abstract screening in the preparation of a meta analysis.

r-mkle 1.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MKLE
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Maximum Kernel Likelihood Estimation
Description:

Package for fast computation of the maximum kernel likelihood estimator (mkle).

r-metan 1.19.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-purrr@1.2.0 r-patchwork@1.3.2 r-mathjaxr@1.8-0 r-magrittr@2.0.4 r-lmertest@3.1-3 r-lme4@1.1-37 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-ggforce@0.5.0 r-ggally@2.4.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/nepem-ufsc/metan
Licenses: GPL 3
Build system: r
Synopsis: Multi Environment Trials Analysis
Description:

This package performs stability analysis of multi-environment trial data using parametric and non-parametric methods. Parametric methods includes Additive Main Effects and Multiplicative Interaction (AMMI) analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric adaptability index by Mohammadi & Amri (2008) <doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart & Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>, genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's (2004) method, power law residuals (POLAR) statistics by Doring et al. (2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>, stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>, weighted average of absolute scores by Olivoto et al. (2019a) <doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>. Non-parametric methods includes superiority index by Lin & Binns (1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for computing biometrical analysis such as path analysis, canonical correlation, partial correlation, clustering analysis, and tools for inspecting, manipulating, summarizing and plotting typical multi-environment trial data are also provided.

r-moult 2.3.1
Propagated dependencies: r-matrix@1.7-4 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=moult
Licenses: GPL 2
Build system: r
Synopsis: Models for Analysing Moult in Birds
Description:

This package provides functions to estimate start and duration of moult from moult data, based on models developed in Underhill and Zucchini (1988, 1990).

r-marketmatching 1.2.1
Propagated dependencies: r-zoo@1.8-14 r-utf8@1.2.6 r-tidyr@1.3.1 r-scales@1.4.0 r-reshape2@1.4.5 r-iterators@1.0.14 r-ggplot2@4.0.1 r-foreach@1.5.2 r-dtw@1.23-1 r-dplyr@1.1.4 r-doparallel@1.0.17 r-causalimpact@1.4.1 r-bsts@0.9.11 r-boom@0.9.16
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MarketMatching
Licenses: GPL 3+
Build system: r
Synopsis: Market Matching and Causal Impact Inference
Description:

For a given test market find the best control markets using time series matching and analyze the impact of an intervention. The intervention could be a marketing event or some other local business tactic that is being tested. The workflow implemented in the Market Matching package utilizes dynamic time warping (the dtw package) to do the matching and the CausalImpact package to analyze the causal impact. In fact, this package can be considered a "workflow wrapper" for those two packages. In addition, if you don't have a chosen set of test markets to match, the Market Matching package can provide suggested test/control market pairs and pseudo prospective power analysis (measuring causal impact at fake interventions).

r-mdftracks 0.2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/burgerga/mdftracks
Licenses: GPL 3 FSDG-compatible
Build system: r
Synopsis: Read and Write 'MTrackJ Data Files'
Description:

MTrackJ is an ImageJ plugin for motion tracking and analysis (see <https://imagescience.org/meijering/software/mtrackj/>). This package reads and writes MTrackJ Data Files ('.mdf', see <https://imagescience.org/meijering/software/mtrackj/format/>). It supports 2D data and read/writes cluster, point, and channel information. If desired, generates track identifiers that are unique over the clusters. See the project page for more information and examples.

r-mvglmmrank 1.2-4
Propagated dependencies: r-numderiv@2016.8-1.1 r-matrix@1.7-4 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mvglmmRank
Licenses: GPL 2
Build system: r
Synopsis: Multivariate Generalized Linear Mixed Models for Ranking Sports Teams
Description:

Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.

r-mrzero 0.2.0
Propagated dependencies: r-robustbase@0.99-6 r-rmarkdown@2.30 r-quantreg@6.1 r-plotly@4.11.0 r-knitr@1.50 r-glmnet@4.1-10 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MRZero
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Diet Mendelian Randomization
Description:

Encodes several methods for performing Mendelian randomization analyses with summarized data. Similar to the MendelianRandomization package, but with fewer bells and whistles, and less frequent updates. As described in Yavorska (2017) <doi:10.1093/ije/dyx034> and Broadbent (2020) <doi:10.12688/wellcomeopenres.16374.2>.

r-megb 0.2
Propagated dependencies: r-mass@7.3-65 r-gbm@2.2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MEGB
Licenses: GPL 2
Build system: r
Synopsis: Gradient Boosting for Longitudinal Data
Description:

Gradient boosting is a powerful statistical learning method known for its ability to model complex relationships between predictors and outcomes while performing inherent variable selection. However, traditional gradient boosting methods lack flexibility in handling longitudinal data where within-subject correlations play a critical role. In this package, we propose a novel approach Mixed Effect Gradient Boosting ('MEGB'), designed specifically for high-dimensional longitudinal data. MEGB incorporates a flexible semi-parametric model that embeds random effects within the gradient boosting framework, allowing it to account for within-individual covariance over time. Additionally, the method efficiently handles scenarios where the number of predictors greatly exceeds the number of observations (p>>n) making it particularly suitable for genomics data and other large-scale biomedical studies.

r-mc-heterogeneity 0.1.2
Propagated dependencies: r-metafor@4.8-0 r-boot-heterogeneity@1.1.5
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mc.heterogeneity
Licenses: GPL 2+
Build system: r
Synopsis: Monte Carlo Based Heterogeneity Test for Meta-Analysis
Description:

This package implements a Monte Carlo Based Heterogeneity Test for standardized mean differences (d), Fisher-transformed Pearson's correlations (r), and natural-logarithm-transformed odds ratio (OR) in Meta-Analysis Studies. Depending on the presence of moderators, this Monte Carlo Based Test can be implemented in the random or mixed-effects model. This package uses rma() function from the R package metafor to obtain parameter estimates and likelihood, so installation of R package metafor is required. This approach refers to the studies of Hedges (1981) <doi:10.3102/10769986006002107>, Hedges & Olkin (1985, ISBN:978-0123363800), Silagy, Lancaster, Stead, Mant, & Fowler (2004) <doi:10.1002/14651858.CD000146.pub2>, Viechtbauer (2010) <doi:10.18637/jss.v036.i03>, and Zuckerman (1994, ISBN:978-0521432009).

r-mvmorph 1.2.1
Propagated dependencies: r-subplex@1.9 r-spam@2.11-1 r-phytools@2.5-2 r-pbmcapply@1.5.1 r-glassofast@1.0.1 r-corpcor@1.6.10 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/JClavel/mvMORPH
Licenses: GPL 2+
Build system: r
Synopsis: Multivariate Comparative Tools for Fitting Evolutionary Models to Morphometric Data
Description:

Fits multivariate (Brownian Motion, Early Burst, ACDC, Ornstein-Uhlenbeck and Shifts) models of continuous traits evolution on trees and time series. mvMORPH also proposes high-dimensional multivariate comparative tools (linear models using Generalized Least Squares and multivariate tests) based on penalized likelihood. See Clavel et al. (2015) <DOI:10.1111/2041-210X.12420>, Clavel et al. (2019) <DOI:10.1093/sysbio/syy045>, and Clavel & Morlon (2020) <DOI:10.1093/sysbio/syaa010>.

r-mod2rm 0.2.1
Propagated dependencies: r-scales@1.4.0 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mod2rm
Licenses: GPL 2+
Build system: r
Synopsis: Moderation Analysis for Two-Instance Repeated Measures Designs
Description:

Multiple moderation analysis for two-instance repeated measures designs, with up to three simultaneous moderators (dichotomous and/or continuous) with additive or multiplicative relationship. Includes analyses of simple slopes and conditional effects at (automatically determined or manually set) values of the moderator(s), as well as an implementation of the Johnson-Neyman procedure for determining regions of significance in single moderator models. Based on Montoya, A. K. (2018) "Moderation analysis in two-instance repeated measures designs: Probing methods and multiple moderator models" <doi:10.3758/s13428-018-1088-6> .

r-marketr 0.0.2
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=marketr
Licenses: CC0
Build system: r
Synopsis: Tidy Calculation of Marketing Metrics Plus Quick Analysis
Description:

Facilitates tidy calculation of popular quantitative marketing metrics. It also includes functions for doing analysis that will help marketers and data analysts better understand the drivers and/or trends of these metrics. These metrics include Customer Experience Index <https://go.forrester.com/analytics/cx-index/> and Net Promoter Score <https://www.netpromoter.com/know/>.

r-mlmtools 1.0.2
Propagated dependencies: r-lme4@1.1-37 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlmtools
Licenses: GPL 3+
Build system: r
Synopsis: Multi-Level Model Assessment Kit
Description:

Multilevel models (mixed effects models) are the statistical tool of choice for analyzing multilevel data (Searle et al, 2009). These models account for the correlated nature of observations within higher level units by adding group-level error terms that augment the singular residual error of a standard OLS regression. Multilevel and mixed effects models often require specialized data pre-processing and further post-estimation derivations and graphics to gain insight into model results. The package presented here, mlmtools', is a suite of pre- and post-estimation tools for multilevel models in R'. Package implements post-estimation tools designed to work with models estimated using lme4''s (Bates et al., 2014) lmer() function, which fits linear mixed effects regression models. Searle, S. R., Casella, G., & McCulloch, C. E. (2009, ISBN:978-0470009598). Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014) <doi:10.18637/jss.v067.i01>.

r-metabolicsurv 1.1.2
Propagated dependencies: r-tidyr@1.3.1 r-survminer@0.5.1 r-survival@3.8-3 r-superpc@1.12 r-rms@8.1-0 r-rdpack@2.6.4 r-pls@2.8-5 r-matrixstats@1.5.0 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/OlajumokeEvangelina/MetabolicSurv
Licenses: GPL 3
Build system: r
Synopsis: Biomarker Validation Approach for Classification and Predicting Survival Using Metabolomics Signature
Description:

An approach to identifies metabolic biomarker signature for metabolic data by discovering predictive metabolite for predicting survival and classifying patients into risk groups. Classifiers are constructed as a linear combination of predictive/important metabolites, prognostic factors and treatment effects if necessary. Several methods were implemented to reduce the metabolomics matrix such as the principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9> , the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3>, the elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected predictive metabolites and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique.

r-memor 0.2.3
Propagated dependencies: r-yaml@2.3.10 r-rmarkdown@2.30 r-knitr@1.50
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/hebrewseniorlife/memor
Licenses: GPL 3
Build system: r
Synopsis: 'rmarkdown' Template that Can be Highly Customized
Description:

This package provides a rmarkdown template that supports company logo, contact info, watermarks and more. Currently restricted to Latex'/'Markdown'; a similar HTML theme will be added in the future.

r-mulsem 1.0
Propagated dependencies: r-openmx@2.22.10
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/mikewlcheung/mulsem
Licenses: GPL 2+
Build system: r
Synopsis: Some Multivariate Analyses using Structural Equation Modeling
Description:

This package provides a set of functions for some multivariate analyses utilizing a structural equation modeling (SEM) approach through the OpenMx package. These analyses include canonical correlation analysis (CANCORR), redundancy analysis (RDA), and multivariate principal component regression (MPCR). It implements procedures discussed in Gu and Cheung (2023) <doi:10.1111/bmsp.12301>, Gu, Yung, and Cheung (2019) <doi:10.1080/00273171.2018.1512847>, and Gu et al. (2023) <doi:10.1080/00273171.2022.2141675>.

r-mad 0.8-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://www.acdelre.com
Licenses: GPL 2+
Build system: r
Synopsis: Meta-Analysis with Mean Differences
Description:

This package provides a collection of functions for conducting a meta-analysis with mean differences data. It uses recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009).

r-modgo 1.0.1
Propagated dependencies: r-wesanderson@0.3.7 r-survival@3.8-3 r-psych@2.5.6 r-patchwork@1.3.2 r-matrix@1.7-4 r-mass@7.3-65 r-gridextra@2.3 r-gp@1.1 r-gldex@2.0.0.9.4 r-ggplot2@4.0.1 r-ggcorrplot@0.1.4.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=modgo
Licenses: GPL 3
Build system: r
Synopsis: Mock Data Generation
Description:

Generation of synthetic data from a real dataset using the combination of rank normal inverse transformation with the calculation of correlation matrix <doi:10.1055/a-2048-7692>. Completely artificial data may be generated through the use of Generalized Lambda Distribution and Generalized Poisson Distribution <doi:10.1201/9781420038040>. Quantitative, binary, ordinal categorical, and survival data may be simulated. Functionalities are offered to generate synthetic data sets according to user's needs.

r-mglm 0.2.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MGLM
Licenses: GPL 2+
Build system: r
Synopsis: Multivariate Response Generalized Linear Models
Description:

This package provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283