Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Designed to be compatible with the R package DBI (Database Interface) when connecting to Amazon Web Service ('AWS') Athena <https://aws.amazon.com/athena/>. To do this the R AWS Software Development Kit ('SDK') paws <https://github.com/paws-r/paws> is used as a driver.
Functions, examples and data from the first and the second edition of "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658). The package provides implementations of optimisation heuristics (Differential Evolution, Genetic Algorithms, Particle Swarm Optimisation, Simulated Annealing and Threshold Accepting), and other optimisation tools, such as grid search and greedy search. There are also functions for the valuation of financial instruments such as bonds and options, for portfolio selection and functions that help with stochastic simulations.
This permutation based hypothesis test, suited for several types of data supported by the estimateNetwork function of the bootnet package (Epskamp & Fried, 2018), assesses the difference between two networks based on several invariance measures (network structure invariance, global strength invariance, edge invariance, several centrality measures, etc.). Network structures are estimated with l1-regularization. The Network Comparison Test is suited for comparison of independent (e.g., two different groups) and dependent samples (e.g., one group that is measured twice). See van Borkulo et al. (2021), available from <doi:10.1037/met0000476>.
This package implements the nonparametric trend test for one or several samples as proposed by Bathke (2009) <doi:10.1007/s00184-008-0171-x>. The method provides a unified framework for analyzing trends in both independent and dependent data samples, making it a versatile tool for various study designs. The package allows for the evaluation of different trend alternatives, including two-sided (general trend), monotonic increasing, and monotonic decreasing trends. As a nonparametric procedure, it does not require the assumption of data normality, offering a robust alternative to parametric tests.
Estimation of relatively complex nonlinear mixed-effects models, including the Sigmoidal Mixed Model and the Piecewise Linear Mixed Model with abrupt or smooth transition, through a single intuitive line of code and with automated generation of starting values.
Format numbers and plots for publication; includes the removal of leading zeros, standardization of number of digits, addition of affixes, and a p-value formatter. These tools combine the functionality of several base functions such as paste()', format()', and sprintf() into specific use case functions that are named in a way that is consistent with usage, making their names easy to remember and easy to deploy.
Despite that several tests for normality in stationary processes have been proposed in the literature, consistent implementations of these tests in programming languages are limited. Seven normality test are implemented. The asymptotic Lobato & Velasco's, asymptotic Epps, Psaradakis and Vávra, Lobato & Velasco's and Epps sieve bootstrap approximations, El bouch et al., and the random projections tests for univariate stationary process. Some other diagnostics such as, unit root test for stationarity, seasonal tests for seasonality, and arch effect test for volatility; are also performed. Additionally, the El bouch test performs normality tests for bivariate time series. The package also offers residual diagnostic for linear time series models developed in several packages.
Estimates the relative transmission probabilities between cases in an infectious disease outbreak or cluster using naive Bayes. Included are various functions to use these probabilities to estimate transmission parameters such as the generation/serial interval and reproductive number as well as finding the contribution of covariates to the probabilities and visualizing results. The ideal use is for an infectious disease dataset with metadata on the majority of cases but more informative data such as contact tracing or pathogen whole genome sequencing on only a subset of cases. For a detailed description of the methods see Leavitt et al. (2020) <doi:10.1093/ije/dyaa031>.
This package provides tools for the structured processing of PET neuroimaging data in preparation for the estimation of Simultaneous Confidence Corridors (SCCs) for one-group, two-group, or single-patient vs group comparisons. The package facilitates PET image loading, data restructuring, integration into a Functional Data Analysis framework, contour extraction, identification of significant results, and performance evaluation. It bridges established packages (e.g., oro.nifti') with novel statistical methodologies (e.g., ImageSCC') and enables reproducible analysis pipelines, including comparison with Statistical Parametric Mapping ('SPM').
The ntfy (pronounce: notify) service is a simple HTTP-based pub-sub notification service. It allows you to send notifications to your phone or desktop via scripts from any computer, entirely without signup, cost or setup. It's also open source if you want to run your own. Visit <https://ntfy.sh> for more details.
This package provides tools for working with the National Hydrography Dataset, with functions for querying, downloading, and networking both the NHD <https://www.usgs.gov/national-hydrography> and NHDPlus <https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus> datasets.
Calculating the density, cumulative distribution, quantile, and random number of neo-normal distribution. It also interfaces with the brms package, allowing the use of the neo-normal distribution as a custom family. This integration enables the application of various brms formulas for neo-normal regression. Modified to be Stable as Normal from Burr (MSNBurr), Modified to be Stable as Normal from Burr-IIa (MSNBurr-IIa), Generalized of MSNBurr (GMSNBurr), Jones-Faddy Skew-t, Fernandez-Osiewalski-Steel Skew Exponential Power, and Jones Skew Exponential Power distributions are supported. References: Choir, A. S. (2020).Unpublished Dissertation, Iriawan, N. (2000).Unpublished Dissertation, Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., & Bastiani, F. D. (2019) <doi:10.1201/9780429298547>.
This package contains a sample of the 2005 Grade 8 Mathematics data from the National Assessment of Educational Progress (NAEP). This data set is called the NAEP Primer.
Retrieve and plot word frequencies through time from the "Google Ngram Viewer" <https://books.google.com/ngrams>.
This package performs network meta-analysis using integrated nested Laplace approximations ('INLA') which is described in Guenhan, Held, and Friede (2018) <doi:10.1002/jrsm.1285>. Includes methods to assess the heterogeneity and inconsistency in the network. Contains more than ten different network meta-analysis dataset. INLA package can be obtained from <https://www.r-inla.org>.
This package provides functions for revealing what happens when effect size estimates from previous studies are taken into account when evaluating each new dataset in a study sequence. The analyses can be conducted for cumulative meta-analyses and for Bayesian data analyses. The package contains sample data for a wide selection of research topics. Jointly considering previous findings along with new data is more likely to result in correct conclusions than does the traditional practice of not incorporating previous findings, which often results in a back and forth ping-pong of conclusions when evaluating a sequence of studies. O'Connor & Ermacora (2021, <doi:10.1037/cbs0000259>).
An interactive document on the topic of naive Bayes classification analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/NBShiny/>.
This package provides tools for estimating Receiver Operating Characteristic (ROC) curves, building confidence bands, comparing several curves both for dependent and independent data, estimating the cumulative-dynamic ROC curve in presence of censored data, and performing meta-analysis studies, among others.
Simulation, estimation, prediction procedure, and model identification methods for nonlinear time series analysis, including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, nonlinearity tests, Kalman filters and various sequential Monte Carlo methods. More examples and details about this package can be found in the book "Nonlinear Time Series Analysis" by Ruey S. Tsay and Rong Chen, John Wiley & Sons, 2018 (ISBN: 978-1-119-26407-1).
Six growth models are fitted using non-linear least squares. These are the Richards, the 3, 4 and 5 parameter logistic, the Gompetz and the Weibull growth models. Reference: Reddy T., Shkedy Z., van Rensburg C. J., Mwambi H., Debba P., Zuma K. and Manda, S. (2021). "Short-term real-time prediction of total number of reported COVID-19 cases and deaths in South Africa: a data driven approach". BMC medical research methodology, 21(1), 1-11. <doi:10.1186/s12874-020-01165-x>.
We connect the multi-class Neyman-Pearson classification (NP) problem to the cost-sensitive learning (CS) problem, and propose two algorithms (NPMC-CX and NPMC-ER) to solve the multi-class NP problem through cost-sensitive learning tools. Under certain conditions, the two algorithms are shown to satisfy multi-class NP properties. More details are available in the paper "Neyman-Pearson Multi-class Classification via Cost-sensitive Learning" (Ye Tian and Yang Feng, 2021).
Computes interdaily stability (IS), intradaily variability (IV) & the relative amplitude (RA) from actigraphy data as described in Blume et al. (2016) <doi: 10.1016/j.mex.2016.05.006> and van Someren et al. (1999) <doi: 10.3109/07420529908998724>. Additionally, it also computes L5 (i.e. the 5 hours with lowest average actigraphy amplitude) and M10 (the 10 hours with highest average amplitude) as well as the respective start times. The flex versions will also compute the L-value for a user-defined number of minutes. IS describes the strength of coupling of a rhythm to supposedly stable zeitgebers. It varies between 0 (Gaussian Noise) and 1 for perfect IS. IV describes the fragmentation of a rhythm, i.e. the frequency and extent of transitions between rest and activity. It is near 0 for a perfect sine wave, about 2 for Gaussian noise and may be even higher when a definite ultradian period of about 2 hrs is present. RA is the relative amplitude of a rhythm. Note that to obtain reliable results, actigraphy data should cover a reasonable number of days.
Calculates phenological cycle and anomalies using a non-parametric approach applied to time series of vegetation indices derived from remote sensing data or field measurements. The package implements basic and high-level functions for manipulating vector data (numerical series) and raster data (satellite derived products). Processing of very large raster files is supported. For more information, please check the following paper: Chávez et al. (2023) <doi:10.3390/rs15010073>.
Collection of functions for fast manipulation, handling, and analysis of large-scale networks based on family and social data. Functions are utility functions used to manipulate data in three "formats": sparse adjacency matrices, pedigree trio family data, and pedigree family data. When possible, the functions should be able to handle millions of data points quickly for use in combination with data from large public national registers and databases. Kenneth Lange (2003, ISBN:978-8181281135).