Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a non-parametric test for multi-observer concordance and differences between concordances in (un)balanced data.
Mainly for maximum likelihood estimation of nonparametric and semiparametric mixture models, but can also be used for fitting finite mixtures. The algorithms are developed in Wang (2007) <doi:10.1111/j.1467-9868.2007.00583.x> and Wang (2010) <doi:10.1007/s11222-009-9117-z>.
Converts number spellings into their equivalent numbers. Supports numbers written in English, French, or Spanish.
Density, distribution function, quantile function and random generation for the Nakagami distribution of Nakagami (1960) <doi:10.1016/B978-0-08-009306-2.50005-4>.
Annotated neuroblastoma copy number profiles, a benchmark data set for change-point detection algorithms, as described by Hocking et al. <doi:10.1186/1471-2105-14-164>.
This package provides tools for modelling, ML estimation, validation analysis and simulation of non homogeneous Poisson processes in time.
Fit multinomial logistic regression with a penalty on the nuclear norm of the estimated regression coefficient matrix, using proximal gradient descent.
Principal Components Analysis of a matrix using Non-linear Iterative Partial Least Squares or weighted Expectation Maximization PCA with Gram-Schmidt orthogonalization of the scores and loadings. Optimized for speed. See Andrecut (2009) <doi:10.1089/cmb.2008.0221>.
This package provides functions for nonlinear time series analysis. This package permits the computation of the most-used nonlinear statistics/algorithms including generalized correlation dimension, information dimension, largest Lyapunov exponent, sample entropy and Recurrence Quantification Analysis (RQA), among others. Basic routines for surrogate data testing are also included. Part of this work was based on the book "Nonlinear time series analysis" by Holger Kantz and Thomas Schreiber (ISBN: 9780521529020).
Multivariate Normal (i.e. Gaussian) Mixture Models (S3) Classes. Fitting models to data using MLE (maximum likelihood estimation) for multivariate normal mixtures via smart parametrization using the LDL (Cholesky) decomposition, see McLachlan and Peel (2000, ISBN:9780471006268), Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>). This package is for ggplot2 plotting methods for nlmixr2 objects.
This package provides functions for Bayesian analysis of data from randomized experiments with non-compliance. The functions are based on the models described in Imbens and Rubin (1997) <doi:10.1214/aos/1034276631>. Currently only two types of outcome models are supported: binary outcomes and normally distributed outcomes. Models can be fit with and without the exclusion restriction and/or the strong access monotonicity assumption. Models are fit using the data augmentation algorithm as described in Tanner and Wong (1987) <doi:10.2307/2289457>.
To add the table of numbers at risk below the Kaplan-Meier plot.
Calculates phenological cycle and anomalies using a non-parametric approach applied to time series of vegetation indices derived from remote sensing data or field measurements. The package implements basic and high-level functions for manipulating vector data (numerical series) and raster data (satellite derived products). Processing of very large raster files is supported. For more information, please check the following paper: Chávez et al. (2023) <doi:10.3390/rs15010073>.
Subsampling methods for big data under different models and assumptions. Starting with linear regression and leading to Generalised Linear Models, softmax regression, and quantile regression. Specifically, the model-robust subsampling method proposed in Mahendran, A., Thompson, H., and McGree, J. M. (2023) <doi:10.1007/s00362-023-01446-9>, where multiple models can describe the big data, and the subsampling framework for potentially misspecified Generalised Linear Models in Mahendran, A., Thompson, H., and McGree, J. M. (2025) <doi:10.48550/arXiv.2510.05902>.
Nonparametric test of independence between a pair of spatial objects (random fields, point processes) based on random shifts with torus or variance correction. See MrkviÄ ka et al. (2021) <doi:10.1016/j.spasta.2020.100430>, DvoŠák et al. (2022) <doi:10.1111/insr.12503>, DvoŠák and MrkviÄ ka (2024) <doi:10.1080/10618600.2024.2357626>.
Automatically runs 18 individual models and 14 ensembles on numeric data, for a total of 32 models. The package automatically returns complete results on all 32 models, 30 charts and six tables. The user simply provides the tidy data, and answers a few questions (for example, how many times would you like to resample the data). From there the package randomly splits the data into train, test and validation sets, fits each of models on the training data, makes predictions on the test and validation sets, measures root mean squared error (RMSE), removes features above a user-set level of Variance Inflation Factor, and has several optional features including scaling all numeric data, four different ways to handle strings in the data. Perhaps the most significant feature is the package's ability to make predictions using the 32 pre trained models on totally new (untrained) data if the user selects that feature. This feature alone represents a very effective solution to the issue of reproducibility of models in data science. The package can also randomly resample the data as many times as the user sets, thus giving more accurate results than a single run. The graphs provide many results that are not typically found. For example, the package automatically calculates the Kolmogorov-Smirnov test for each of the 32 models and plots a bar chart of the results, a bias bar chart of each of the 32 models, as well as several plots for exploratory data analysis (automatic histograms of the numeric data, automatic histograms of the numeric data). The package also automatically creates a summary report that can be both sorted and searched for each of the 32 models, including RMSE, bias, train RMSE, test RMSE, validation RMSE, overfitting and duration. The best results on the holdout data typically beat the best results in data science competitions and published results for the same data set.
This package implements the nonparametric causality-in-quantiles test (in mean or variance), returning a test object with an S3 plot() method. The current implementation uses one lag of each series (first-order Granger causality setup). Methodology is based on Balcilar, Gupta, and Pierdzioch (2016a) <doi:10.1016/j.resourpol.2016.04.004> and Balcilar et al. (2016) <doi:10.1007/s11079-016-9388-x>.
The aim is to develop an R package, which is the new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, a Bimodal Weibull Distribution, the Discrete Lindley Distribution, The Gamma-Lomax Distribution, Weighted Geometric Distribution, a Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, the Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, the Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.
This package provides statistical methods for network meta-analysis of 1â 5 diagnostic tests to simultaneously compare multiple tests within a missing data framework, including: - Bayesian hierarchical model for network meta-analysis of multiple diagnostic tests (Ma, Lian, Chu, Ibrahim, and Chen (2018) <doi:10.1093/biostatistics/kxx025>) - Bayesian Hierarchical Summary Receiver Operating Characteristic Model for Network Meta-Analysis of Diagnostic Tests (Lian, Hodges, and Chu (2019) <doi:10.1080/01621459.2018.1476239>).
The n-vector framework uses the normal vector to the Earth ellipsoid (called n-vector) as a non-singular position representation that turns out to be very convenient for practical position calculations. The n-vector is simple to use and gives exact answers for all global positions, and all distances, for both ellipsoidal and spherical Earth models. This package is a translation of the Matlab library from FFI, the Norwegian Defence Research Establishment, as described in Gade (2010) <doi:10.1017/S0373463309990415>.
Support the book: Wu CO and Tian X (2018). Nonparametric Models for Longitudinal Data. Chapman & Hall/CRC (to appear); and provide fit for using global and local smoothing methods for the conditional-mean and conditional-distribution based models with longitudinal Data.
This package provides a software package to perform Wombling, or boundary analysis, using the nimble Bayesian hierarchical modeling environment. Wombling is used widely to track regions of rapid change within the spatial reference domain. Specific functions in the package implement Gaussian process models for point-referenced spatial data followed by predictive inference on rates of change over curves using line integrals. We demonstrate model based Bayesian inference using posterior distributions featuring simple analytic forms while offering uncertainty quantification over curves. For more details on wombling please see, Banerjee and Gelfand (2006) <doi:10.1198/016214506000000041> and Halder, Banerjee and Dey (2024) <doi:10.1080/01621459.2023.2177166>.
This package contains functions to query and visualize the Neuroimaging features associated with genetically regulated gene expression (GReX). The primary utility, neuroimaGene(), relies on a list of user-defined genes and returns a table of neuroimaging features (NIDPs) associated with each gene. This resource is designed to assist in the interpretation of genome-wide and transcriptome-wide association studies that evaluate brain related traits. Bledsoe (2024) <doi:10.1016/j.ajhg.2024.06.002>. In addition there are several visualization functions that generate summary plots and 2-dimensional visualizations of regional brain measures. Mowinckel (2020).