_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-bggm 2.1.6
Propagated dependencies: r-sna@2.8 r-reshape@0.8.10 r-rdpack@2.6.4 r-rcppprogress@0.4.2 r-rcppdist@0.1.1.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-network@1.19.0 r-mvnfast@0.2.8 r-mass@7.3-65 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-ggally@2.4.0 r-bfpack@1.5.3
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://rast-lab.github.io/BGGM/
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Gaussian Graphical Models
Description:

Fit Bayesian Gaussian graphical models. The methods are separated into two Bayesian approaches for inference: hypothesis testing and estimation. There are extensions for confirmatory hypothesis testing, comparing Gaussian graphical models, and node wise predictability. These methods were recently introduced in the Gaussian graphical model literature, including Williams (2019) <doi:10.31234/osf.io/x8dpr>, Williams and Mulder (2019) <doi:10.31234/osf.io/ypxd8>, Williams, Rast, Pericchi, and Mulder (2019) <doi:10.31234/osf.io/yt386>.

r-bndovb 1.1
Propagated dependencies: r-pracma@2.4.6 r-np@0.60-18 r-nnet@7.3-20 r-mass@7.3-65 r-factormodel@1.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bndovb
Licenses: GPL 3
Build system: r
Synopsis: Bounding Omitted Variable Bias Using Auxiliary Data
Description:

This package provides functions to implement a Hwang(2021) <doi:10.2139/ssrn.3866876> estimator, which bounds an omitted variable bias using auxiliary data.

r-bestglm 0.37.3
Propagated dependencies: r-pls@2.8-5 r-leaps@3.2 r-lattice@0.22-7 r-grpreg@3.5.0 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bestglm
Licenses: GPL 2+
Build system: r
Synopsis: Best Subset GLM and Regression Utilities
Description:

Best subset glm using information criteria or cross-validation, carried by using leaps algorithm (Furnival and Wilson, 1974) <doi:10.2307/1267601> or complete enumeration (Morgan and Tatar, 1972) <doi:10.1080/00401706.1972.10488918>. Implements PCR and PLS using AIC/BIC. Implements one-standard deviation rule for use with the caret package.

r-bhmbasket 0.9.5
Propagated dependencies: r-r2jags@0.8-9 r-foreach@1.5.2 r-dorng@1.8.6.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://CRAN.R-project.org/package=bhmbasket
Licenses: GPL 3
Build system: r
Synopsis: Bayesian Hierarchical Models for Basket Trials
Description:

This package provides functions for the evaluation of basket trial designs with binary endpoints. Operating characteristics of a basket trial design are assessed by simulating trial data according to scenarios, analyzing the data with Bayesian hierarchical models (BHMs), and assessing decision probabilities on stratum and trial-level based on Go / No-go decision making. The package is build for high flexibility regarding decision rules, number of interim analyses, number of strata, and recruitment. The BHMs proposed by Berry et al. (2013) <doi:10.1177/1740774513497539> and Neuenschwander et al. (2016) <doi:10.1002/pst.1730>, as well as a model that combines both approaches are implemented. Functions are provided to implement Bayesian decision rules as for example proposed by Fisch et al. (2015) <doi:10.1177/2168479014533970>. In addition, posterior point estimates (mean/median) and credible intervals for response rates and some model parameters can be calculated. For simulated trial data, bias and mean squared errors of posterior point estimates for response rates can be provided.

r-blockcov 0.1.1
Propagated dependencies: r-tibble@3.3.0 r-rlang@1.1.6 r-rdpack@2.6.4 r-matrix@1.7-4 r-magrittr@2.0.4 r-dplyr@1.1.4 r-bbmisc@1.13
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BlockCov
Licenses: GPL 2+
Build system: r
Synopsis: Estimation of Large Block Covariance Matrices
Description:

Computation of large covariance matrices having a block structure up to a permutation of their columns and rows from a small number of samples with respect to the dimension of the matrix. The method is described in the paper Perrot-Dockès et al. (2019) <arXiv:1806.10093>.

r-blockmodels 1.1.5
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-digest@0.6.39
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=blockmodels
Licenses: LGPL 2.1
Build system: r
Synopsis: Latent and Stochastic Block Model Estimation by a 'V-EM' Algorithm
Description:

Latent and Stochastic Block Model estimation by a Variational EM algorithm. Various probability distribution are provided (Bernoulli, Poisson...), with or without covariates.

r-bfboin 0.1.1
Propagated dependencies: r-purrr@1.2.0 r-boin@2.7.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://openpharma.github.io/bfboin/
Licenses: GPL 3+
Build system: r
Synopsis: Operating Characteristics for the Bayesian Optimal Interval Design with Back Filling
Description:

Calculate the operating characteristics of the Bayesian Optimal Interval with Back Filling Design for dose escalation in early-phase oncology trials.

r-brmsmargins 0.2.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-posterior@1.6.1 r-extraoperators@0.3.0 r-data-table@1.17.8 r-brms@2.23.0 r-bayestestr@0.17.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://joshuawiley.com/brmsmargins/
Licenses: GPL 3+
Build system: r
Synopsis: Bayesian Marginal Effects for 'brms' Models
Description:

Calculate Bayesian marginal effects, average marginal effects, and marginal coefficients (also called population averaged coefficients) for models fit using the brms package including fixed effects, mixed effects, and location scale models. These are based on marginal predictions that integrate out random effects if necessary (see for example <doi:10.1186/s12874-015-0046-6> and <doi:10.1111/biom.12707>).

r-bdc 1.1.6
Propagated dependencies: r-tidyselect@1.2.1 r-tibble@3.3.0 r-taxadb@0.2.1 r-stringr@1.6.0 r-stringi@1.8.7 r-stringdist@0.9.15 r-sf@1.0-23 r-rnaturalearth@1.1.0 r-rgnparser@0.3.0 r-readr@2.1.6 r-qs2@0.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-here@1.0.2 r-ggplot2@4.0.1 r-fs@1.6.6 r-foreach@1.5.2 r-dt@0.34.0 r-dplyr@1.1.4 r-doparallel@1.0.17 r-coordinatecleaner@3.0.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://brunobrr.github.io/bdc/https://github.com/brunobrr/bdc
Licenses: GPL 3+
Build system: r
Synopsis: Biodiversity Data Cleaning
Description:

It brings together several aspects of biodiversity data-cleaning in one place. bdc is organized in thematic modules related to different biodiversity dimensions, including 1) Merge datasets: standardization and integration of different datasets; 2) pre-filter: flagging and removal of invalid or non-interpretable information, followed by data amendments; 3) taxonomy: cleaning, parsing, and harmonization of scientific names from several taxonomic groups against taxonomic databases locally stored through the application of exact and partial matching algorithms; 4) space: flagging of erroneous, suspect, and low-precision geographic coordinates; and 5) time: flagging and, whenever possible, correction of inconsistent collection date. In addition, it contains features to visualize, document, and report data quality â which is essential for making data quality assessment transparent and reproducible. The reference for the methodology is Ribeiro and colleagues (2022) <doi:10.1111/2041-210X.13868>.

r-bpvars 1.0
Propagated dependencies: r-tmvtnsim@0.1.4 r-rcpptn@0.2-2 r-rcppprogress@0.4.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-r6@2.6.1 r-generics@0.1.4 r-bsvars@3.2
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://bsvars.org/bpvars/
Licenses: GPL 3+
Build system: r
Synopsis: Forecasting with Bayesian Panel Vector Autoregressions
Description:

This package provides Bayesian estimation and forecasting of dynamic panel data using Bayesian Panel Vector Autoregressions with hierarchical prior distributions. The models include country-specific VARs that share a global prior distribution that extend the model by JarociŠski (2010) <doi:10.1002/jae.1082>. Under this prior expected value, each country's system follows a global VAR with country-invariant parameters. Further flexibility is provided by the hierarchical prior structure that retains the Minnesota prior interpretation for the global VAR and features estimated prior covariance matrices, shrinkage, and persistence levels. Bayesian forecasting is developed for models including exogenous variables, allowing conditional forecasts given the future trajectories of some variables and restricted forecasts assuring that rates are forecasted to stay positive and less than 100. The package implements the model specification, estimation, and forecasting routines, facilitating coherent workflows and reproducibility. It also includes automated pseudo-out-of-sample forecasting and computation of forecasting performance measures. Beautiful plots, informative summary functions, and extensive documentation complement all this. An extraordinary computational speed is achieved thanks to employing frontier econometric and numerical techniques and algorithms written in C++'. The bpvars package is aligned regarding objects, workflows, and code structure with the R packages bsvars by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars> and bsvarSIGNs by Wang & Woźniak (2025) <doi:10.32614/CRAN.package.bsvarSIGNs>, and they constitute an integrated toolset. Copyright: 2025 International Labour Organization.

r-bossa 3.7
Propagated dependencies: r-rsqlite@2.4.4 r-plotrix@3.8-13 r-phangorn@2.12.1 r-jsonlite@2.0.0 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BoSSA
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Bunch of Structure and Sequence Analysis
Description:

Reads and plots phylogenetic placements.

r-bddwc 0.1.15
Propagated dependencies: r-shinyjs@2.1.0 r-shinyfiles@0.9.3 r-shinydashboard@0.7.3 r-shinybs@0.61.1 r-shiny@1.11.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bdDwC
Licenses: GPL 3
Build system: r
Synopsis: Darwinizer: Darwin Core (DwC) Field Names Standardization
Description:

The shiny application bdDwC makes biodiversity data field names Darwin Core compatible.

r-biospear 1.0.2
Propagated dependencies: r-survival@3.8-3 r-survauc@1.4-0 r-rcurl@1.98-1.17 r-prroc@1.4 r-proc@1.19.0.1 r-plsrcox@1.8.0 r-pkgconfig@2.0.3 r-mboost@2.9-11 r-matrix@1.7-4 r-mass@7.3-65 r-grplasso@0.4-7 r-glmnet@4.1-10 r-devtools@2.4.6 r-corpcor@1.6.10 r-cobs@1.3-9-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=biospear
Licenses: GPL 2
Build system: r
Synopsis: Biomarker Selection in Penalized Regression Models
Description:

This package provides some tools for developing and validating prediction models, estimate expected survival of patients and visualize them graphically. Most of the implemented methods are based on penalized regressions such as: the lasso (Tibshirani R (1996)), the elastic net (Zou H et al. (2005) <doi:10.1111/j.1467-9868.2005.00503.x>), the adaptive lasso (Zou H (2006) <doi:10.1198/016214506000000735>), the stability selection (Meinshausen N et al. (2010) <doi:10.1111/j.1467-9868.2010.00740.x>), some extensions of the lasso (Ternes et al. (2016) <doi:10.1002/sim.6927>), some methods for the interaction setting (Ternes N et al. (2016) <doi:10.1002/bimj.201500234>), or others. A function generating simulated survival data set is also provided.

r-boral 2.0.3
Propagated dependencies: r-reshape2@1.4.5 r-r2jags@0.8-9 r-mvtnorm@1.3-3 r-mass@7.3-65 r-lifecycle@1.0.4 r-fishmod@0.29.2 r-corpcor@1.6.10 r-coda@0.19-4.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=boral
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Ordination and Regression AnaLysis
Description:

Bayesian approaches for analyzing multivariate data in ecology. Estimation is performed using Markov Chain Monte Carlo (MCMC) methods via Three. JAGS types of models may be fitted: 1) With explanatory variables only, boral fits independent column Generalized Linear Models (GLMs) to each column of the response matrix; 2) With latent variables only, boral fits a purely latent variable model for model-based unconstrained ordination; 3) With explanatory and latent variables, boral fits correlated column GLMs with latent variables to account for any residual correlation between the columns of the response matrix.

r-bpmnr 0.1.1
Propagated dependencies: r-xml2@1.5.0 r-uuid@1.2-1 r-tidyr@1.3.1 r-stringr@1.6.0 r-rvest@1.0.5 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-knitr@1.50 r-huxtable@5.8.0 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1 r-glue@1.8.0 r-dt@0.34.0 r-dplyr@1.1.4 r-diagrammersvg@0.1 r-diagrammer@1.0.11
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bpmnR
Licenses: Expat
Build system: r
Synopsis: Support for BPMN (Business Process Management Notation) Models
Description:

Creating, rendering and writing BPMN diagrams <https://www.bpmn.org/>. Functionalities can be used to visualize and export BPMN diagrams created using the pm4py and bupaRminer packages. Part of the bupaR ecosystem.

r-betabit 2.2
Propagated dependencies: r-digest@0.6.39
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/BetaAndBit/Charts
Licenses: GPL 2
Build system: r
Synopsis: Mini Games from Adventures of Beta and Bit
Description:

Three games: proton, frequon and regression. Each one is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. In proton you have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. In frequon you will help to perform statistical cryptanalytic attack on a corpus of ciphered messages. This time seven sub-tasks are pushing the bar much higher. Do you accept the challenge? In regression you will test your modeling skills in a series of eight sub-tasks. Try only if ANOVA is your close friend. It's a part of Beta and Bit project. You will find more about the Beta and Bit project at <https://github.com/BetaAndBit/Charts>.

r-betabayes 1.0.1
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-betareg@3.2-4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=betaBayes
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Beta Regression
Description:

This package provides a class of Bayesian beta regression models for the analysis of continuous data with support restricted to an unknown finite support. The response variable is modeled using a four-parameter beta distribution with the mean or mode parameter depending linearly on covariates through a link function. When the response support is known to be (0,1), the above class of models reduce to traditional (0,1) supported beta regression models. Model choice is carried out via the logarithm of the pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). See Zhou and Huang (2022) <doi:10.1016/j.csda.2021.107345>.

r-bspadata 1.1.0
Propagated dependencies: r-spdep@1.4-1 r-pscl@1.5.9 r-pbapply@1.7-4 r-mvtnorm@1.3-3 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=BSPADATA
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Proposal to Fit Spatial Econometric Models
Description:

The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedatic case. The fit is made through MCMC algorithms and observational working variables approach.

r-bootur 1.0.4
Propagated dependencies: r-urca@1.3-4 r-rcppthread@2.2.0 r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-parallelly@1.45.1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/smeekes/bootUR
Licenses: GPL 2+
Build system: r
Synopsis: Bootstrap Unit Root Tests
Description:

Set of functions to perform various bootstrap unit root tests for both individual time series (including augmented Dickey-Fuller test and union tests), multiple time series and panel data; see Smeekes and Wilms (2023) <doi:10.18637/jss.v106.i12>, Palm, Smeekes and Urbain (2008) <doi:10.1111/j.1467-9892.2007.00565.x>, Palm, Smeekes and Urbain (2011) <doi:10.1016/j.jeconom.2010.11.010>, Moon and Perron (2012) <doi:10.1016/j.jeconom.2012.01.008>, Smeekes and Taylor (2012) <doi:10.1017/S0266466611000387> and Smeekes (2015) <doi:10.1111/jtsa.12110> for key references.

r-birdring 1.6
Propagated dependencies: r-raster@3.6-32 r-lazydata@1.1.0 r-ks@1.15.1 r-geosphere@1.5-20
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=birdring
Licenses: GPL 2
Build system: r
Synopsis: Methods to Analyse Ring Re-Encounter Data
Description:

R functions to read EURING data and analyse re-encounter data of birds marked by metal rings. For a tutorial, go to <doi:10.1080/03078698.2014.933053>.

r-bvls 1.4
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bvls
Licenses: GPL 2+
Build system: r
Synopsis: The Stark-Parker algorithm for bounded-variable least squares
Description:

An R interface to the Stark-Parker implementation of an algorithm for bounded-variable least squares.

r-biogram 1.6.3
Propagated dependencies: r-slam@0.1-55 r-partitions@1.10-9 r-entropy@1.3.2 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/michbur/biogram
Licenses: GPL 3
Build system: r
Synopsis: N-Gram Analysis of Biological Sequences
Description:

This package provides tools for extraction and analysis of various n-grams (k-mers) derived from biological sequences (proteins or nucleic acids). Contains QuiPT (quick permutation test) for fast feature-filtering of the n-gram data.

r-bmstdr 0.8.2
Propagated dependencies: r-stanheaders@2.32.10 r-sptimer@3.3.3 r-sptdyn@2.0.3 r-spbayes@0.4-8 r-rstantools@2.5.0 r-rstan@2.32.7 r-rdpack@2.6.4 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-mnormt@2.1.1 r-mcmcpack@1.7-1 r-inlabru@2.13.0 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-carbayesst@4.0 r-carbayes@6.1.1 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://www.sujitsahu.com
Licenses: GPL 2
Build system: r
Synopsis: Bayesian Modeling of Spatio-Temporal Data with R
Description:

Fits, validates and compares a number of Bayesian models for spatial and space time point referenced and areal unit data. Model fitting is done using several packages: rstan', INLA', spBayes', spTimer', spTDyn', CARBayes and CARBayesST'. Model comparison is performed using the DIC and WAIC, and K-fold cross-validation where the user is free to select their own subset of data rows for validation. Sahu (2022) <doi:10.1201/9780429318443> describes the methods in detail.

r-bigtime 0.2.3
Propagated dependencies: r-tidyr@1.3.1 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-corrplot@0.95
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/ineswilms/bigtime
Licenses: GPL 2+
Build system: r
Synopsis: Sparse Estimation of Large Time Series Models
Description:

Estimation of large Vector AutoRegressive (VAR), Vector AutoRegressive with Exogenous Variables X (VARX) and Vector AutoRegressive Moving Average (VARMA) Models with Structured Lasso Penalties, see Nicholson, Wilms, Bien and Matteson (2020) <https://jmlr.org/papers/v21/19-777.html> and Wilms, Basu, Bien and Matteson (2021) <doi:10.1080/01621459.2021.1942013>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283