Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions that facilitate and speed up the analysis of data produced by a Syntech servosphere <http://www.ockenfels-syntech.com/products/locomotion-compensation/>, which is equipment for studying the movement behavior of arthropods. This package is designed to make working with data produced from a servosphere easy for someone new to or unfamiliar with R. The functions provided in this package fall into three broad-use categories: functions for cleaning raw data produced by the servosphere software, functions for deriving movement variables based on position data, and functions for summarizing movement variables for easier analysis. These functions are built with functions from the tidyverse package to work efficiently, as a single servosphere file may consist of hundreds of thousands of rows of data and a user may wish to analyze hundreds of files at a time. Many of the movement variables derivable through this package are described in the following papers: Otálora-Luna, Fernando; Dickens, Joseph C. (2011) <doi:10.1371/journal.pone.0020990> Party, Virginie; Hanot, Christophe; Busser, Daniela Schmidt; Rochat, Didier; Renou, Michel (2013) <doi:10.1371/journal.pone.0052897> Bell, William J.; Kramer, Ernest (1980) <doi:10.1007/BF01402908> Becher, Paul G; Guerin, Patrick M. (2009) <doi:10.1016/j.jinsphys.2009.01.006>.
An implementation of the Similarity-First Search algorithm (SFS), a combinatorial algorithm which can be used to solve the seriation problem and to recognize some structured weighted graphs. The SFS algorithm represents a generalization to weighted graphs of the graph search algorithm Lexicographic Breadth-First Search (Lex-BFS), a variant of Breadth-First Search. The SFS algorithm reduces to Lex-BFS when applied to binary matrices (or, equivalently, unweighted graphs). Hence this library can be also considered for Lex-BFS applications such as recognition of graph classes like chordal or unit interval graphs. In fact, the SFS seriation algorithm implemented in this package is a multisweep algorithm, which consists in repeating a finite number of SFS iterations (at most n sweeps for a matrix of size n). If the data matrix has a Robinsonian structure, then the ranking returned by the multistep SFS algorithm is a Robinson ordering of the input matrix. Otherwise the algorithm can be used as a heuristic to return a ranking partially satisfying the Robinson property.
Use stem analysis data to reconstructing tree growth and carbon accumulation. Users can independently or in combination perform a number of standard tasks for any tree species. (i) Age class determination. (ii) The cumulative growth, mean annual increment, and current annual increment of diameter at breast height (DBH) with bark, tree height, and stem volume with bark are estimated. (iii) Tree biomass and carbon storage estimation from volume and allometric models are calculated. (iv) Height-diameter relationship is fitted with nonlinear models, if diameter at breast height (DBH) or tree height are available, which can be used to retrieve tree height and diameter at breast height (DBH). <https://github.com/forestscientist/StemAnalysis>.
Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
This package provides tools for generating and analyzing simulation studies. Users may easily specify all terms of a simulation study, often in a single line of code. Common univariate and bivariate methods, such as t tests, proportions tests, and chi squared tests, are integrated. Multivariate studies involving linear or logistic regression may also be specified with symbolic inputs. The simulation studies generate data for n observations in each of B experiments. Analyses of each experiment are integrated, and empirical results across the experiments are also provided.
Efficiently estimate shape parameters of periodic time series imagery with which a statistical seasonal trend analysis (STA) is subsequently performed. STA output can be exported in conventional raster formats. Methods to visualize STA output are also implemented as well as the calculation of additional basic statistics. STA is based on (R. Eastman, F. Sangermano, B. Ghimire, H. Zhu, H. Chen, N. Neeti, Y. Cai, E. Machado and S. Crema, 2009) <doi:10.1080/01431160902755338>.
This package provides methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.
Enables the complete removal of various Shiny components, such as inputs, outputs and modules. It also aids in the removal of observers that have been created in dynamically created modules.
R-side code to implement an R editor and IDE in Komodo IDE with the SciViews-K extension.
This package performs multiple testing corrections that take specific structure of hypotheses into account, as described in Sankaran & Holmes (2014) <doi:10.18637/jss.v059.i13>.
An accurate and easy tool for performing linear trajectory inference on single cells using single-cell RNA sequencing data. In addition, SCORPIUS provides functions for discovering the most important genes with respect to the reconstructed trajectory, as well as nice visualisation tools. Cannoodt et al. (2016) <doi:10.1101/079509>.
The sufficient forecasting (SF) method is implemented by this package for a single time series forecasting using many predictors and a possibly nonlinear forecasting function. Assuming that the predictors are driven by some latent factors, the SF first conducts factor analysis and then performs sufficient dimension reduction on the estimated factors to derive predictive indices for forecasting. The package implements several dimension reduction approaches, including principal components (PC), sliced inverse regression (SIR), and directional regression (DR). Methods for dimension reduction are as described in: Fan, J., Xue, L. and Yao, J. (2017) <doi:10.1016/j.jeconom.2017.08.009>, Luo, W., Xue, L., Yao, J. and Yu, X. (2022) <doi:10.1093/biomet/asab037> and Yu, X., Yao, J. and Xue, L. (2022) <doi:10.1080/07350015.2020.1813589>.
This package provides a unique dataset of historical forest cover across all states in the United States, spanning from 1907 to 2017, along with 1630 as a reference year. This dataset is important for understanding environmental changes and land use trends over time. It includes functionality for easy access of the data.
An interface to explore trends in Twitter data using the Storywrangler Application Programming Interface (API), which can be found here: <https://github.com/janeadams/storywrangler>.
Imbibition causes seeds to expand, which results in the seed coat or testa being broken. Seed germination begins with imbibition. Imbibition aids in the transport of water into the developing ovules. Imbibition is required during the first stages of root water absorption.
This package provides functions for statistical analysis of point processes.
Construct various types of space-filling designs, including Latin hypercube designs, clustering-based designs, maximin designs, maximum projection designs, and uniform designs (Joseph 2016 <doi:10.1080/08982112.2015.1100447>). It also offers the option to optimize designs based on user-defined criteria. This work is supported by U.S. National Science Foundation grant DMS-2310637.
This package provides functions to retrieve the location of R scripts loaded through the source() function or run from the command line using the Rscript command. This functionality is analogous to the Bash shell's $BASH_SOURCE[0]. Users can first set the project root's path relative to the script path and then all subsequent paths relative to the root. This system ensures that all paths lead to the same location regardless of where any script is executed/loaded from without resorting to the use of setwd() at the top of the scripts.
Validate data.frames against schemas to ensure that data matches expectations. Define schemas using tidyselect and predicate functions for type consistency, nullability, and more. Schema failure messages can be tailored for non-technical users and are ideal for user-facing applications such as in shiny or plumber'.
An R shiny user interface for the nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>) package, designed to simplify the modeling process for users. Additionally, this package includes supplementary functions to further enhances the usage of nlmixr2'.
This is an R implementation of a constrained l1 minimization approach for estimating multiple Sparse Gaussian or Nonparanormal Graphical Models (SIMULE). The SIMULE algorithm can be used to estimate multiple related precision matrices. For instance, it can identify context-specific gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogenous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(simuleDemo) to learn the basic functions provided by this package. For further details, please read the original paper: Beilun Wang, Ritambhara Singh, Yanjun Qi (2017) <DOI:10.1007/s10994-017-5635-7>.
An implementation of neural networks trained with flow-sorted gene expression data to classify cellular phenotypes in single cell RNA-sequencing data. See Chamberlain M et al. (2021) <doi:10.1101/2021.02.01.429207> for more details.
Converts the floor speeches of Uruguayan legislators, extracted from the parliamentary minutes, to tidy data.frame where each observation is the intervention of a single legislator.
Streamlined workflow from deconvolution of bulk RNA-seq data to downstream differential expression and gene-set enrichment analysis. Provide various visualization functions.