_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-topiclabels 0.3.0
Propagated dependencies: r-progress@1.2.3 r-jsonlite@2.0.0 r-httr@1.4.7 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/PetersFritz/topiclabels
Licenses: GPL 3+
Synopsis: Automated Topic Labeling with Language Models
Description:

Leveraging (large) language models for automatic topic labeling. The main function converts a list of top terms into a label for each topic. Hence, it is complementary to any topic modeling package that produces a list of top terms for each topic. While human judgement is indispensable for topic validation (i.e., inspecting top terms and most representative documents), automatic topic labeling can be a valuable tool for researchers in various scenarios.

r-torchdatasets 0.3.1
Propagated dependencies: r-zip@2.3.3 r-withr@3.0.2 r-torchvision@0.8.0 r-torch@0.16.3 r-stringr@1.6.0 r-pins@1.4.1 r-fs@1.6.6
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://mlverse.github.io/torchdatasets/
Licenses: Expat
Synopsis: Ready to Use Extra Datasets for Torch
Description:

This package provides datasets in a format that can be easily consumed by torch dataloaders'. Handles data downloading from multiple sources, caching and pre-processing so users can focus only on their model implementations.

r-tidytlg 0.11.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rstudioapi@0.17.1 r-rlang@1.1.6 r-readxl@1.4.5 r-purrr@1.2.0 r-png@0.1-8 r-magrittr@2.0.4 r-huxtable@5.8.0 r-glue@1.8.0 r-ggplot2@4.0.1 r-forcats@1.0.1 r-dplyr@1.1.4 r-crayon@1.5.3 r-cli@3.6.5 r-cellranger@1.1.0 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://pharmaverse.github.io/tidytlg/main/
Licenses: ASL 2.0
Synopsis: Create TLGs using the 'tidyverse'
Description:

Generate tables, listings, and graphs (TLG) using tidyverse'. Tables can be created functionally, using a standard TLG process, or by specifying table and column metadata to create generic analysis summaries. The envsetup package can also be leveraged to create environments for table creation.

r-tensorts 1.0.2
Propagated dependencies: r-tensor@1.5.1 r-rtensor@1.4.9 r-pracma@2.4.6 r-matrix@1.7-4 r-mass@7.3-65 r-expm@1.0-0 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/zebang/tensorTS
Licenses: GPL 2+
Synopsis: Factor and Autoregressive Models for Tensor Time Series
Description:

Factor and autoregressive models for matrix and tensor valued time series. We provide functions for estimation, simulation and prediction. The models are discussed in Li et al (2021) <doi:10.48550/arXiv.2110.00928>, Chen et al (2020) <DOI:10.1080/01621459.2021.1912757>, Chen et al (2020) <DOI:10.1016/j.jeconom.2020.07.015>, and Xiao et al (2020) <doi:10.48550/arXiv.2006.02611>.

r-tabledown 1.0.0
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-psych@2.5.6 r-plotly@4.11.0 r-mote@1.2.2 r-mirt@1.45.1 r-magrittr@2.0.4 r-lavaan@0.6-20 r-kutils@1.73 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://masiraji.github.io/tabledown/
Licenses: Expat
Synopsis: Create Publication Quality Tables and Plots
Description:

Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis.

r-tetragon 1.3.0
Propagated dependencies: r-tictoc@1.2.1 r-stringr@1.6.0 r-scales@1.4.0 r-rfast@2.1.5.2 r-readr@2.1.6 r-purrr@1.2.0 r-philentropy@0.10.0 r-narray@0.5.2 r-moments@0.14.1 r-modeest@2.4.0 r-lubridate@1.9.4 r-imputets@3.4 r-greybox@2.0.6 r-ggplot2@4.0.1 r-fastdummies@1.7.5 r-fancova@0.6-1 r-entropy@1.3.2 r-dqrng@0.4.1 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://rpubs.com/giancarlo_vercellino/tetragon
Licenses: GPL 3
Synopsis: Automatic Sequence Prediction by Expansion of the Distance Matrix
Description:

Each sequence is predicted by expanding the distance matrix. The compact set of hyper-parameters is tuned through random search.

r-trdist 1.0.1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=trdist
Licenses: GPL 2+ GPL 3+
Synopsis: Univariate Proability Distributions with Truncation
Description:

Truncation of univariate probability distributions. The probability distribution can come from other packages so long as the function names follow the standard d, p, q, r naming format. Also other univariate probability distributions are included.

r-topksignal 1.0
Propagated dependencies: r-reshape2@1.4.5 r-nloptr@2.2.1 r-matrix@1.7-4 r-ggplot2@4.0.1 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TopKSignal
Licenses: GPL 2
Synopsis: Convex Optimization Tool for Signal Reconstruction from Multiple Ranked Lists
Description:

This package provides a mathematical optimization procedure in combination with statistical bootstrap for the estimation of the latent signals (sometimes called scores) informing the global consensus ranking (often named aggregation ranking). To solve mid/large-scale problems, users should install the gurobi optimiser (available from <https://www.gurobi.com/>).

r-tpfp 0.0.1
Propagated dependencies: r-xlsx@0.6.5 r-readxl@1.4.5 r-knitr@1.50
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=tpfp
Licenses: Expat
Synopsis: Counts the Number of True Positives and False Positives
Description:

Calculates the number of true positives and false positives from a dataset formatted for Jackknife alternative free-response receiver operating characteristic which is used for statistical analysis which is explained in the book Chakraborty DP (2017), "Observer Performance Methods for Diagnostic Imaging - Foundations, Modeling, and Applications with R-Based Examples", Taylor-Francis <https://www.crcpress.com/9781482214840>.

r-trelliscopejs 0.2.11
Propagated dependencies: r-webshot@0.5.5 r-tidyr@1.3.1 r-rlang@1.1.6 r-purrr@1.2.0 r-progress@1.2.3 r-knitr@1.50 r-jsonlite@2.0.0 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1 r-gtable@0.3.6 r-ggplot2@4.0.1 r-fidelius@0.0.2 r-dplyr@1.1.4 r-distributionutils@0.6-2 r-digest@0.6.39 r-base64enc@0.1-3 r-autocogs@0.1.5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://hafen.github.io/trelliscopejs/
Licenses: Modified BSD
Synopsis: Create Interactive Trelliscope Displays
Description:

Trelliscope is a scalable, flexible, interactive approach to visualizing data (Hafen, 2013 <doi:10.1109/LDAV.2013.6675164>). This package provides methods that make it easy to create a Trelliscope display specification for TrelliscopeJS. High-level functions are provided for creating displays from within tidyverse or ggplot2 workflows. Low-level functions are also provided for creating new interfaces.

r-triact 0.3.1
Propagated dependencies: r-r6@2.6.1 r-lubridate@1.9.4 r-data-table@1.17.8 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/agroscope-ch/triact
Licenses: GPL 3+
Synopsis: Analyzing the Lying Behavior of Cows from Accelerometer Data
Description:

Assists in analyzing the lying behavior of cows from raw data recorded with a triaxial accelerometer attached to the hind leg of a cow. Allows the determination of common measures for lying behavior including total lying duration, the number of lying bouts, and the mean duration of lying bouts. Further capabilities are the description of lying laterality and the calculation of proxies for the level of physical activity of the cow. Reference: Simmler M., Brouwers S. P. (2024) <doi:10.7717/peerj.17036>.

r-taylor 3.2.0
Propagated dependencies: r-vctrs@0.6.5 r-tibble@3.3.0 r-scales@1.4.0 r-rlang@1.1.6 r-lifecycle@1.0.4 r-glue@1.8.0 r-ggplot2@4.0.1 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://taylor.wjakethompson.com
Licenses: Expat
Synopsis: Lyrics and Song Data for Taylor Swift's Discography
Description:

This package provides a comprehensive resource for data on Taylor Swift songs. Data is included for all officially released studio albums, extended plays (EPs), and individual singles are included. Data comes from Genius (lyrics) and Spotify (song characteristics). Additional functions are included for easily creating data visualizations with color palettes inspired by Taylor Swift's album covers.

r-timbr 0.2.2
Propagated dependencies: r-vctrs@0.6.5 r-tidygraph@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-purrr@1.2.0 r-pillar@1.11.1 r-memoise@2.0.1 r-lifecycle@1.0.4 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/UchidaMizuki/timbr
Licenses: Expat
Synopsis: Forest/Tree Data Frames
Description:

This package provides data frames for forest or tree data structures. You can create forest data structures from data frames and process them based on their hierarchies.

r-transition 1.0.1
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://mark-eis.github.io/Transition/
Licenses: Expat
Synopsis: Characterise Transitions in Test Result Status in Longitudinal Studies
Description:

Analyse data from longitudinal studies to characterise changes in values of semi-quantitative outcome variables within individual subjects, using high performance C++ code to enable rapid processing of large datasets. A flexible methodology is available for codifying these state transitions.

r-transgraph 1.1.0
Propagated dependencies: r-mass@7.3-65 r-huge@1.3.5 r-heteroggm@1.0.1 r-glasso@1.11 r-evaluationmeasures@1.1.0 r-dcov@0.1.1 r-clime@0.5.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TransGraph
Licenses: GPL 2
Synopsis: Transfer Graph Learning
Description:

Transfer learning, aiming to use auxiliary domains to help improve learning of the target domain of interest when multiple heterogeneous datasets are available, has been a hot topic in statistical machine learning. The recent transfer learning methods with statistical guarantees mainly focus on the overall parameter transfer for supervised models in the ideal case with the informative auxiliary domains with overall similarity. In contrast, transfer learning for unsupervised graph learning is in its infancy and largely follows the idea of overall parameter transfer as for supervised learning. In this package, the transfer learning for several complex graphical models is implemented, including Tensor Gaussian graphical models, non-Gaussian directed acyclic graph (DAG), and Gaussian graphical mixture models. Notably, this package promotes local transfer at node-level and subgroup-level in DAG structural learning and Gaussian graphical mixture models, respectively, which are more flexible and robust than the existing overall parameter transfer. As by-products, transfer learning for undirected graphical model (precision matrix) via D-trace loss, transfer learning for mean vector estimation, and single non-Gaussian learning via topological layer method are also included in this package. Moreover, the aggregation of auxiliary information is an important issue in transfer learning, and this package provides multiple user-friendly aggregation methods, including sample weighting, similarity weighting, and most informative selection. (Note: the transfer for tensor GGM has been temporarily removed in the current version as its dependent R package Tlasso has been archived. The historical version TransGraph_1.0.0.tar.gz can be downloaded at <https://cran.r-project.org/src/contrib/Archive/TransGraph/>) Reference: Ren, M., Zhen Y., and Wang J. (2024) <https://jmlr.org/papers/v25/22-1313.html> "Transfer learning for tensor graphical models". Ren, M., He X., and Wang J. (2023) <doi:10.48550/arXiv.2310.10239> "Structural transfer learning of non-Gaussian DAG". Zhao, R., He X., and Wang J. (2022) <https://jmlr.org/papers/v23/21-1173.html> "Learning linear non-Gaussian directed acyclic graph with diverging number of nodes".

r-tsmarch 1.0.0
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-tsmethods@1.0.2 r-tsgarch@1.0.3 r-tsdistributions@1.0.3 r-shape@1.4.6.1 r-sandwich@3.1-1 r-rsolnp@2.0.1 r-rdpack@2.6.4 r-rcppparallel@5.1.11-1 r-rcppbessel@1.0.0 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-numderiv@2016.8-1.1 r-nloptr@2.2.1 r-lubridate@1.9.4 r-future-apply@1.20.0 r-future@1.68.0 r-data-table@1.17.8 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/tsmodels/tsmarch
Licenses: GPL 2
Synopsis: Multivariate ARCH Models
Description:

Feasible Multivariate Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models including Dynamic Conditional Correlation (DCC), Copula GARCH and Generalized Orthogonal GARCH with Generalized Hyperbolic distribution. A review of some of these models can be found in Boudt, Galanos, Payseur and Zivot (2019) <doi:10.1016/bs.host.2019.01.001>.

r-twoway 0.6.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/friendly/twoway
Licenses: GPL 3
Synopsis: Analysis of Two-Way Tables
Description:

Carries out analyses of two-way tables with one observation per cell, together with graphical displays for an additive fit and a diagnostic plot for removable non-additivity via a power transformation of the response. It implements Tukey's Exploratory Data Analysis (1973) <ISBN: 978-0201076165> methods, including a 1-degree-of-freedom test for row*column non-additivity', linear in the row and column effects.

r-tokenizers-bpe 0.1.4
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/bnosac/tokenizers.bpe
Licenses: FSDG-compatible
Synopsis: Byte Pair Encoding Text Tokenization
Description:

Unsupervised text tokenizer focused on computational efficiency. Wraps the YouTokenToMe library <https://github.com/VKCOM/YouTokenToMe> which is an implementation of fast Byte Pair Encoding (BPE) <https://aclanthology.org/P16-1162/>.

r-tmplate 0.0.3
Propagated dependencies: r-trnslate@0.0.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: <https://marioma.me?i=soft>
Licenses: GPL 2+
Synopsis: Code Generation Based on Templates
Description:

Define general templates with tags that can be replaced by content depending on arguments and objects to modify the final output of the document.

r-tdavec 0.1.41
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/uislambekov/TDAvec
Licenses: GPL 2+
Synopsis: Vector Summaries of Persistence Diagrams
Description:

This package provides tools for computing various vector summaries of persistence diagrams studied in Topological Data Analysis. For improved computational efficiency, all code for the vector summaries is written in C++ using the Rcpp and RcppArmadillo packages.

r-tugboat 0.1.5
Propagated dependencies: r-renv@1.1.5 r-here@1.0.2
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://www.dmolitor.com/tugboat/
Licenses: GPL 3+
Synopsis: Build a Docker Image from a Directory or Project
Description:

Simple utilities to generate a Dockerfile from a directory or project, build the corresponding Docker image, push the image to DockerHub, and publicly share the project via Binder.

r-threeway 1.1.3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=ThreeWay
Licenses: GPL 2+
Synopsis: Three-Way Component Analysis
Description:

Component analysis for three-way data arrays by means of Candecomp/Parafac, Tucker3, Tucker2 and Tucker1 models.

r-tensorbss 0.3.9
Propagated dependencies: r-tsbss@1.0.0 r-tensor@1.5.1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-jade@2.0-4 r-ictest@0.3-6 r-ggplot2@4.0.1 r-fica@1.1-3 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=tensorBSS
Licenses: GPL 2+
Synopsis: Blind Source Separation Methods for Tensor-Valued Observations
Description:

This package contains several utility functions for manipulating tensor-valued data (centering, multiplication from a single mode etc.) and the implementations of the following blind source separation methods for tensor-valued data: tPCA', tFOBI', tJADE', k-tJADE', tgFOBI', tgJADE', tSOBI', tNSS.SD', tNSS.JD', tNSS.TD.JD', tPP and tTUCKER'.

r-treestructure 0.7.0
Propagated dependencies: r-rlang@1.1.6 r-rcpp@1.1.0 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://emvolz-phylodynamics.github.io/treestructure/
Licenses: GPL 2+
Synopsis: Detect Population Structure Within Phylogenetic Trees
Description:

Algorithms for detecting population structure from the history of coalescent events recorded in phylogenetic trees. This method classifies each tip and internal node of a tree into disjoint sets characterized by similar coalescent patterns.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208