Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistics students often have problems understanding the relation between a random variable's true scale and its z-values. To allow instructors to better better visualize histograms for these students, the package provides histograms with two horizontal axis containing z-values and the true scale of the variable. The function TeachHistDens() provides a density histogram with two axis. TeachHistCounts() and TeachHistRelFreq() are variations for count and relative frequency histograms, respectively. TeachConfInterv() and TeachHypTest() help instructors to visualize confidence levels and the results of hypothesis tests.
Tree Ring Analysis of Disturbance Events in R (TRADER) package provides functions for disturbance reconstruction from tree-ring data, e.g. boundary line, absolute increase, growth averaging methods.
This package provides functions for admin needs of employees of Thomas Jefferson University and Thomas Jefferson University Hospital, Philadelphia, PA.
Two-stage procedure compares hazard rate functions, which may or may not cross each other.
Differentiate client errors (4xx) from server errors (5xx) for the plumber and RestRserve HTTP API frameworks. The package also includes a built-in logging mechanism to standard output (STDOUT) or standard error (STDERR) depending on the log level.
Builds tables with customizable rows. Users can specify the type of data to use for each row, as well as how to handle missing data and the types of comparison tests to run on the table columns.
This package provides functions to support economic modelling in R based on the methods of the Dutch guideline for economic evaluations in healthcare <https://www.zorginstituutnederland.nl/documenten/2024/01/16/richtlijn-voor-het-uitvoeren-van-economische-evaluaties-in-de-gezondheidszorg>, CBS data <https://www.cbs.nl/>, and OECD data <https://www.oecd.org/en.html>.
Estimation of causal odds ratio and power calculation given trends in exposure prevalence and outcome frequencies of stratified data.
This package provides feedback about dplyr and tidyr operations.
The trigger strategy is a general framework for a multistage statistical design with multiple hypotheses, allowing an adaptive selection of interim analyses. The selection of interim stages can be associated with some prespecified endpoints which serve as the trigger. This selection allows us to refine the critical boundaries in hypotheses testing procedures, and potentially increase the statistical power. This package includes several trial designs using the trigger strategy. See Gou, J. (2023), "Trigger strategy in repeated tests on multiple hypotheses", Statistics in Biopharmaceutical Research, 15(1), 133-140, and Gou, J. (2022), "Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints", Biometrical Journal, 64(2), 301-311.
This package provides a game inspired by Tetris'. Opens a plot window device and starts a game of tetRys in it. Steer the tetrominos with the arrow keys, press Pause to pause and Esc to end the game.
This package provides methods for generating modelled parametric Tropical Cyclone (TC) spatial hazard fields and time series output at point locations from TC tracks. R's compatibility to simply use fast cpp code via the Rcpp package and the wide range spatial analysis tools via the terra package makes it an attractive open source environment to study TCs'. This package estimates TC vortex wind and pressure fields using parametric equations originally coded up in python by TCRM <https://github.com/GeoscienceAustralia/tcrm> and then coded up in Cuda cpp by TCwindgen <https://github.com/CyprienBosserelle/TCwindgen>.
This package implements rank preserving structural failure time model (RPSFTM), iterative parameter estimation (IPE), inverse probability of censoring weights (IPCW), marginal structural model (MSM), simple two-stage estimation (TSEsimp), and improved two-stage estimation with g-estimation (TSEgest) methods for treatment switching in randomized clinical trials.
Does nothing useful, but perhaps does that nothing in an entertaining or informative fashion.
This package provides tools to help developers and producers manipulate R objects and outputs. It includes tools for displaying results and objects, and for formatting them in the correct format.
Collection of ancillary functions and utilities to be used in conjunction with the TraMineR package for sequence data exploration. Includes, among others, specific functions such as state survival plots, position-wise group-typical states, dynamic sequence indicators, and dissimilarities between event sequences. Also includes contributions by non-members of the TraMineR team such as methods for polyadic data and for the comparison of groups of sequences.
Reconstruct phylogenetic trees from discrete data. Inapplicable character states are handled using the algorithm of Brazeau, Guillerme and Smith (2019) <doi:10.1093/sysbio/syy083> with the "Morphy" library, under equal or implied step weights. Contains a "shiny" user interface for interactive tree search and exploration of results, including character visualization, rogue taxon detection, tree space mapping, and cluster consensus trees (Smith 2022a, b) <doi:10.1093/sysbio/syab099>, <doi:10.1093/sysbio/syab100>. Profile Parsimony (Faith and Trueman, 2001) <doi:10.1080/10635150118627>, Successive Approximations (Farris, 1969) <doi:10.2307/2412182> and custom optimality criteria are implemented.
Differential analysis of tumor tissue immune cell type abundance based on RNA-seq gene-level expression from The Cancer Genome Atlas (TCGA; <https://pancanatlas.xenahubs.net>) database.
Obtain population density and body size structure, using video material or image sequences as input. Functions assist in the creation of image sequences from videos, background detection and subtraction, particle identification and tracking. An artificial neural network can be trained for noise filtering. The goal is to supply accurate estimates of population size, structure and/or individual behavior, for use in evolutionary and ecological studies.
This package provides methods for computing joint tests, controlling the Familywise Error Rate (FWER) and getting lower bounds on the number of false hypotheses in a set. The methods implemented here are described in Mogensen and Markussen (2021) <doi:10.48550/arXiv.2108.04731>.
Simplify reporting many tables by creating tibbles of tables. With tabtibble', a tibble of tables is created with captions and automatic printing using knit_print()'.
Simulation methods for phylogenetic trees where (i) all tips are sampled at one time point or (ii) tips are sampled sequentially through time. (i) For sampling at one time point, simulations are performed under a constant rate birth-death process, conditioned on having a fixed number of final tips (sim.bd.taxa()), or a fixed age (sim.bd.age()), or a fixed age and number of tips (sim.bd.taxa.age()). When conditioning on the number of final tips, the method allows for shifts in rates and mass extinction events during the birth-death process (sim.rateshift.taxa()). The function sim.bd.age() (and sim.rateshift.taxa() without extinction) allow the speciation rate to change in a density-dependent way. The LTT plots of the simulations can be displayed using LTT.plot(), LTT.plot.gen() and LTT.average.root(). TreeSim further samples trees with n final tips from a set of trees generated by the common sampling algorithm stopping when a fixed number m>>n of tips is first reached (sim.gsa.taxa()). This latter method is appropriate for m-tip trees generated under a big class of models (details in the sim.gsa.taxa() man page). For incomplete phylogeny, the missing speciation events can be added through simulations (corsim()). (ii) sim.rateshifts.taxa() is generalized to sim.bdsky.stt() for serially sampled trees, where the trees are conditioned on either the number of sampled tips or the age. Furthermore, for a multitype-branching process with sequential sampling, trees on a fixed number of tips can be simulated using sim.bdtypes.stt.taxa(). This function further allows to simulate under epidemiological models with an exposed class. The function sim.genespeciestree() simulates coalescent gene trees within birth-death species trees, and sim.genetree() simulates coalescent gene trees.
This package provides functions for managing cashflows and interest rate curves.
Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis.