Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides feedback about dplyr and tidyr operations.
Find topics in texts which are semantically embedded using techniques like word2vec or Glove. This topic modelling technique models each word with a categorical distribution whose natural parameter is the inner product between a word embedding and an embedding of its assigned topic. The techniques are explained in detail in the paper Topic Modeling in Embedding Spaces by Adji B. Dieng, Francisco J. R. Ruiz, David M. Blei (2019), available at <doi:10.48550/arXiv.1907.04907>.
This package creates some tables of clinical study. Table 1 is created by table1() to describe baseline characteristics, which is essential in every clinical study. Created by table2(), the function of Table 2 is to explore influence factors. And Table 3 created by table3() is able to make stratified analysis.
TidyTuesday is a project by the Data Science Learning Community in which they post a weekly dataset in a public data repository (<https://github.com/rfordatascience/tidytuesday>) for people to analyze and visualize. This package provides the tools to easily download this data and the description of the source.
Collection of phylogenetic tree statistics, collected throughout the literature. All functions have been written to maximize computation speed. The package includes umbrella functions to calculate all statistics, all balance associated statistics, or all branching time related statistics. Furthermore, the treestats package supports summary statistic calculations on Ltables, provides speed-improved coding of branching times, Ltable conversion and includes algorithms to create intermediately balanced trees. Full description can be found in Janzen (2024) <doi:10.1016/j.ympev.2024.108168>.
Extends invariant causal prediction (Peters et al., 2016, <doi:10.1111/rssb.12167>) to generalized linear and transformation models (Hothorn et al., 2018, <doi:10.1111/sjos.12291>). The methodology is described in Kook et al. (2023, <doi:10.1080/01621459.2024.2395588>).
This package implements inverse and augmented inverse probability weighted estimators for common treatment effect parameters at an interim analysis with time-lagged outcome that may not be available for all enrolled subjects. Produces estimators, standard errors, and information that can be used to compute stopping boundaries using software that assumes that the estimators/test statistics have independent increments. Tsiatis, A. A. and Davidian, M., (2022) <doi:10.1002/sim.9580> .
This package performs various statistical transformations; Box-Cox and Log (Box and Cox, 1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Glog (Durbin et al., 2002) <doi:10.1093/bioinformatics/18.suppl_1.S105>, Neglog (Whittaker et al., 2005) <doi:10.1111/j.1467-9876.2005.00520.x>, Reciprocal (Tukey, 1957), Log Shift (Feng et al., 2016) <doi:10.1002/sta4.104>, Bickel-Docksum (Bickel and Doksum, 1981) <doi:10.1080/01621459.1981.10477649>, Yeo-Johnson (Yeo and Johnson, 2000) <doi:10.1093/biomet/87.4.954>, Square Root (Medina et al., 2019), Manly (Manly, 1976) <doi:10.2307/2988129>, Modulus (John and Draper, 1980) <doi:10.2307/2986305>, Dual (Yang, 2006) <doi:10.1016/j.econlet.2006.01.011>, Gpower (Kelmansky et al., 2013) <doi:10.1515/sagmb-2012-0030>. It also performs graphical approaches, assesses the success of the transformation via tests and plots.
This package provides functions for performing time domain signal coding as used in Chesmore (2001) <doi:10.1016/S0003-682X(01)00009-3>, and related tasks. This package creates the standard S-matrix and A-matrix (with variable lag), has tools to convert coding matrices into distributed matrices, provides published codebooks and allows for extraction of code sequences.
This package provides a shiny based interactive exploration framework for analyzing clinical trials data. teal currently provides a dynamic filtering facility and different data viewers. teal shiny applications are built using standard shiny modules.
Function for sparse regression on raw text, regressing a labeling vector onto a feature space consisting of all possible phrases.
Compile snippets of LaTeX directly into images from the R console to view in the RStudio viewer pane, Shiny apps and RMarkdown documents.
This package provides functions for analyzing citizens bicycle usage pattern and predicting rental amount on specific conditions. Functions on this package interacts with data on tashudata package, a drat repository. tashudata package contains rental/return history on public bicycle system('Tashu'), weather for 3 years and bicycle station information. To install this data package, see the instructions at <https://github.com/zeee1/Tashu_Rpackage>. top10_stations(), top10_paths() function visualizes image showing the most used top 10 stations and paths. daily_bike_rental() and monthly_bike_rental() shows daily, monthly amount of bicycle rental. create_train_dataset(), create_test_dataset() is data processing function for prediction. Bicycle rental history from 2013 to 2014 is used to create training dataset and that on 2015 is for test dataset. Users can make random-forest prediction model by using create_train_model() and predict amount of bicycle rental in 2015 by using predict_bike_rental().
Two one-sided tests (TOST) procedure to test equivalence for t-tests, correlations, differences between proportions, and meta-analyses, including power analysis for t-tests and correlations. Allows you to specify equivalence bounds in raw scale units or in terms of effect sizes. See: Lakens (2017) <doi:10.1177/1948550617697177>.
Converting structured data from tables into XML format using predefined templates ensures consistency and flexibility, making it ideal for data exchange, reporting, and automated workflows.
This package provides a novel feature-wise normalization method based on a zero-inflated negative binomial model. This method assumes that the effects of sequencing depth vary for each taxon on their mean and also incorporates a rational link of zero probability and taxon dispersion as a function of sequencing depth. Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif (2023) <doi:10.1101/2023.10.31.563648>.
The ts objects in R are managed using a very specific date format (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, depending on the frequency, for example). We focus solely on monthly and quarterly series to manage the dates of ts objects. The general idea is to offer a set of functions to manage this date format without it being too restrictive or too imprecise depending on the rounding. This is a compromise between simplicity, precision and use of the basic stats functions for creating and managing time series (ts(), window()). Les objets ts en R sont gérés par un format de date très particulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deuxième trimestre 2021 selon la fréquence par exemple). On se concentre uniquement sur les séries mensuelles et trimestrielles pour gérer les dates des objets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce format de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un compromis entre simplicité, précision et utilisation des fonctions du package stats de création et de gestion des séries temporelles (ts(), window()).
This package provides a convenient way to log scalars, images, audio, and histograms in the tfevent record file format. Logged data can be visualized on the fly using TensorBoard', a web based tool that focuses on visualizing the training progress of machine learning models.
Specialized toolkit for processing biological and fisheries data from Peru's anchovy (Engraulis ringens) fishery. Provides functions to analyze fishing logbooks, calculate biological indicators (length-weight relationships, juvenile percentages), generate spatial fishing indicators, and visualize regulatory measures from Peru's Ministry of Production. Features automated data processing from multiple file formats, coordinate validation, spatial analysis of fishing zones, and tools for analyzing fishing closure announcements and regulatory compliance. Includes built-in datasets of Peruvian coastal coordinates and parallel lines for analyzing fishing activities within regulatory zones.
This package provides a framework for dynamically combining forecasting models for time series forecasting predictive tasks. It leverages machine learning models from other packages to automatically combine expert advice using metalearning and other state-of-the-art forecasting combination approaches. The predictive methods receive a data matrix as input, representing an embedded time series, and return a predictive ensemble model. The ensemble use generic functions predict() and forecast() to forecast future values of the time series. Moreover, an ensemble can be updated using methods, such as update_weights() or update_base_models()'. A complete description of the methods can be found in: Cerqueira, V., Torgo, L., Pinto, F., and Soares, C. "Arbitrated Ensemble for Time Series Forecasting." to appear at: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017; and Cerqueira, V., Torgo, L., and Soares, C.: "Arbitrated Ensemble for Solar Radiation Forecasting." International Work-Conference on Artificial Neural Networks. Springer, 2017 <doi:10.1007/978-3-319-59153-7_62>.
This package provides a synthetic control offers a way of evaluating the effect of an intervention in comparative case studies. The package makes a number of improvements when implementing the method in R. These improvements allow users to inspect, visualize, and tune the synthetic control more easily. A key benefit of a tidy implementation is that the entire preparation process for building the synthetic control can be accomplished in a single pipe.
This package provides functions that can be used to calculate time-dependent state and parameter sensitivities for both continuous- and discrete-time deterministic models. See Ng et al. (2023) <doi:10.1086/726143> for more information about time-dependent sensitivity analysis.
Calculate optimal Zhong's two-/three-stage Phase II designs (see Zhong (2012) <doi:10.1016/j.cct.2012.07.006>). Generate Target Toxicity decision table for Phase I dose-finding (two-/three-stage). This package also allows users to run dose-finding simulations based on customized decision table.
This package provides a hypothesis test and variable selection algorithm for use in time-varying, concurrent regression models. The hypothesis test function is also accompanied by a plotting function which will show the estimated beta(s) and confidence band(s) from the hypothesis test. The hypothesis test function helps the user identify significant covariates within the scope of a time-varying concurrent model. The plots will show the amount of area that falls outside the confidence band(s) which is used for the test statistic within the hypothesis test.