This package provides a straightforward, well-documented, and broad boosting routine for classification, ideally suited for small to moderate-sized data sets. It performs discrete, real, and gentle boost under both exponential and logistic loss on a given data set.
This package provides a wrapper for ada-url', a WHATWG compliant and fast URL parser written in modern C++'. Also contains auxiliary functions such as a public suffix extractor.
This software ADAM
is a Gene set enrichment analysis (GSEA) package created to group a set of genes from comparative samples (control versus experiment) belonging to different species according to their respective functions. The corresponding roles are extracted from the default collections like Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG). ADAM
show their significance by calculating the p-values referring to gene diversity and activity. Each group of genes is called Group of functionally associated genes (GFAG).
This package implements the adaptive smoothing spline estimator for the function-on-function linear regression model described in Centofanti et al. (2023) <doi:10.1007/s00180-022-01223-6>.
This package tracks reading and writing within R scripts that are organized into a directed acyclic graph. It contains an interactive Shiny application adaprApp()
. It uses Git and file hashes to track version histories of inputs and outputs.
ADAPT carries out differential abundance analysis for microbiome metagenomics data in phyloseq format. It has two innovations. One is to treat zero counts as left censored and use Tobit models for log count ratios. The other is an innovative way to find non-differentially abundant taxa as reference, then use the reference taxa to find the differentially abundant ones.
Estimate the causal treatment effect for subjects that can adhere to one or both of the treatments. Given longitudinal data with missing observations, consistent causal effects are calculated. Unobserved potential outcomes are estimated through direct integration as described in: Qu et al., (2019) <doi:10.1080/19466315.2019.1700157> and Zhang et. al., (2021) <doi:10.1080/19466315.2021.1891965>.
The Genetic Algorithm (GA) is a type of optimization method of Evolutionary Algorithms. It uses the biologically inspired operators such as mutation, crossover, selection and replacement.Because of their global search and robustness abilities, GAs have been widely utilized in machine learning, expert systems, data science, engineering, life sciences and many other areas of research and business. However, the regular GAs need the techniques to improve their efficiency in computing time and performance in finding global optimum using some adaptation and hybridization strategies. The adaptive GAs (AGA) increase the convergence speed and success of regular GAs by setting the parameters crossover and mutation probabilities dynamically. The hybrid GAs combine the exploration strength of a stochastic GAs with the exact convergence ability of any type of deterministic local search algorithms such as simulated-annealing, in addition to other nature-inspired algorithms such as ant colony optimization, particle swarm optimization etc. The package adana includes a rich working environment with its many functions that make possible to build and work regular GA, adaptive GA, hybrid GA and hybrid adaptive GA for any kind of optimization problems. Cebeci, Z. (2021, ISBN: 9786254397448).
This package provides methods and algorithms for discrete optimization, e.g. knapsack and subset sum procedures, derivative-free Nelder-Mead and Hooke-Jeeves minimization, and some (evolutionary) global optimization functions.
Package that simulates adaptive (multi-arm, multi-stage) clinical trials using adaptive stopping, adaptive arm dropping, and/or adaptive randomisation. Developed as part of the INCEPT (Intensive Care Platform Trial) project (<https://incept.dk/>), primarily supported by a grant from Sygeforsikringen "danmark" (<https://www.sygeforsikring.dk/>).
This package implements Freund and Schapire's Adaboost.M1 algorithm and Breiman's Bagging algorithm using classification trees as individual classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross validation estimation of the error can be done.
This package provides tools to construct (or add to) cell-type signature matrices using flow sorted or single cell samples and deconvolve bulk gene expression data. Useful for assessing the quality of single cell RNAseq experiments, estimating the accuracy of signature matrices, and determining cell-type spillover. Please cite: Danziger SA et al. (2019) ADAPTS: Automated Deconvolution Augmentation of Profiles for Tissue Specific cells <doi:10.1371/journal.pone.0224693>.
Implementation of adaptive p-value thresholding (AdaPT
), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>
.
This package analyzes and creates plots of array CGH data. Also, it allows usage of CBS, wavelet-based smoothing, HMM, BioHMM, GLAD, CGHseg. Most computations are parallelized (either via forking or with clusters, including MPI and sockets clusters) and use ff
for storing data.
This package ADAMgui
is a graphical user interface (GUI) for the ADAM
package. The ADAMgui
package provides two shiny-based applications that allows the user to study the output of the ADAM
package files through different plots. It's possible, for example, to choose a specific group of functionally associated genes (GFAG) and observe the gene expression behavior with the plots created with the GFAGtargetUi
function. Features such as differential expression and fold change can be easily seen with aid of the plots made with the GFAGpathUi
function.
Huber-type estimation for mean, covariance and (regularized) regression. For all the methods, the robustification parameter tau is chosen by a tuning-free principle.
This package provides a collection of several pharmacovigilance signal detection methods based on adaptive lasso. Additional lasso-based and propensity score-based signal detection approaches are also supplied. See Courtois et al <doi:10.1186/s12874-021-01450-3>.
For distributions whose probability density functions are log-concave, the adaptive rejection sampling algorithm can be used to build envelope functions for sampling. For others, the modified adaptive rejection sampling algorithm, the concave-convex adaptive rejection sampling algorithm, and the adaptive slice sampling algorithm can be used. This R package mainly includes these four functions: rARS()
, rMARS()
, rCCARS()
, and rASS()
. These functions can realize sampling based on the algorithms above.
Simulate clinical trials for diagnostic test devices and evaluate the operating characteristics under an adaptive design with futility assessment determined via the posterior predictive probabilities.
The functions defined in this program serve for implementing adaptive two-stage tests. Currently, four tests are included: Bauer and Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke, An investigation of two-stage tests, Statistica Sinica 2006.
Enables sampling from arbitrary distributions if the log density is known up to a constant; a common situation in the context of Bayesian inference. The implemented sampling algorithm was proposed by Vihola (2012) <DOI:10.1007/s11222-011-9269-5> and achieves often a high efficiency by tuning the proposal distributions to a user defined acceptance rate.
This package contains functions carrying out adaptive procedures using mixed scaling approach to establish bioequivalence for in-vitro permeation test (IVPT) data. Currently, the package provides procedures based on parallel replicate design and balanced data, according to the U.S. Food and Drug Administration's "Draft Guidance on Acyclovir" <https://www.accessdata.fda.gov/drugsatfda_docs/psg/Acyclovir_topical%20cream_RLD%2021478_RV12-16.pdf>. Potvin et al. (2008) <doi:10.1002/pst.294> provides the basis for our adaptive design (see Method B). For a comprehensive overview of the method, refer to Lim et al. (2023) <doi:10.1002/pst.2333>. This package reflects the views of the authors and should not be construed to represent the views or policies of the U.S. Food and Drug Administration.
This package is a collection of several algorithms to obtain archetypoids with small and large databases and with both classical multivariate data and functional data (univariate and multivariate). Some of these algorithms also detect anomalies (outliers).
This package provides tools to infer the code style (which style rules are followed and which ones are not) from one package and use it to check another. This makes it easier to find and correct the most important problems first.