The goal of jetty is to execute R functions and code snippets in an isolated R subprocess within a Docker container and return the evaluated results to the local R session. jetty can install necessary packages at runtime and seamlessly propagates errors and outputs from the Docker subprocess back to the main session. jetty is primarily designed for sandboxed testing and quick execution of example code.
Shiny apps for the quantitative analysis of images from lateral flow assays (LFAs). The images are segmented and background corrected and color intensities are extracted. The apps can be used to import and export intensity data and to calibrate LFAs by means of linear, loess, or gam models. The calibration models can further be saved and applied to intensity data from new images for determining concentrations.
Print vectors (and data frames) of floating point numbers using a non-scientific format optimized for human readers. Vectors of numbers are rounded using significant digits, aligned at the decimal point, and all zeros trailing the decimal point are dropped. See: Wright (2016). Lucid: An R Package for Pretty-Printing Floating Point Numbers. In JSM Proceedings, Statistical Computing Section. Alexandria, VA: American Statistical Association. 2270-2279.
Mica is a server application used to create data web portals for large-scale epidemiological studies or multiple-study consortia. Mica helps studies to provide scientifically robust data visibility and web presence without significant information technology effort. Mica provides a structured description of consortia, studies, annotated and searchable data dictionaries, and data access request management. This Mica client allows to perform data extraction for reporting purposes.
Three algorithms for estimating a Markov random field structure.Two of them are an exact version and a simulated annealing version of a penalized maximum conditional likelihood method similar to the Bayesian Information Criterion. These algorithm are described in Frondana (2016) <doi:10.11606/T.45.2018.tde-02022018-151123>.The third one is a greedy algorithm, described in Bresler (2015) <doi:10.1145/2746539.2746631).
This package provides functions for working with (grouped) multivariate normal variance mixture distributions (evaluation of distribution functions and densities, random number generation and parameter estimation), including Student's t distribution for non-integer degrees-of-freedom as well as the grouped t distribution and copula with multiple degrees-of-freedom parameters. See <doi:10.18637/jss.v102.i02> for a high-level description of select functionality.
Inferring causal associations in cross-sectional earth system data through empirical dynamic modeling (EDM), with extensions to convergent cross mapping from Sugihara et al. (2012) <doi:10.1126/science.1227079>, partial cross mapping as outlined in Leng et al. (2020) <doi:10.1038/s41467-020-16238-0>, and cross mapping cardinality as described in Tao et al. (2023)<doi:10.1016/j.fmre.2023.01.007>.
TensorFlow
Hub is a library for the publication, discovery, and consumption of reusable parts of machine learning models. A module is a self-contained piece of a TensorFlow
graph, along with its weights and assets, that can be reused across different tasks in a process known as transfer learning. Transfer learning train a model with a smaller dataset, improve generalization, and speed up training.
Descriptive statistics for large data tend to be low resolution on the tails. Whisker Odds generate a table of descriptive statistics for large data. This is the same as letter-values, but with an alternative naming of depths which allow for depths beyond 26. For a reference to letter-values see Heike Hofmann and Hadley Wickham and Karen Kafadar (2017) <doi:10.1080/10618600.2017.1305277>.
The Connectivity Map (CMap) is a massive resource of perturbational gene expression profiles built by researchers at the Broad Institute and funded by the NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program. Please visit https://clue.io for more information. The cmapR
package implements methods to parse, manipulate, and write common CMap data objects, such as annotated matrices and collections of gene sets.
This package computes the areas under the precision-recall (PR) and ROC curve for weighted (e.g. soft-labeled) and unweighted data. In contrast to other implementations, the interpolation between points of the PR curve is done by a non-linear piecewise function. In addition to the areas under the curves, the curves themselves can also be computed and plotted by a specific S3-method.
The bit64 package provides serializable S3 atomic 64 bit (signed) integers that can be used in vectors, matrices, arrays and data.frames
. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as match
and order
support interactive data exploration and manipulation and optionally leverage caching.
Fits linear models with endogenous regressor using latent instrumental variable approaches. The methods included in the package are Lewbel's (1997) <doi:10.2307/2171884> higher moments approach as well as Lewbel's (2012) <doi:10.1080/07350015.2012.643126> heteroscedasticity approach, Park and Gupta's (2012) <doi:10.1287/mksc.1120.0718> joint estimation method that uses Gaussian copula and Kim and Frees's (2007) <doi:10.1007/s11336-007-9008-1> multilevel generalized method of moment approach that deals with endogeneity in a multilevel setting. These are statistical techniques to address the endogeneity problem where no external instrumental variables are needed. See the publication related to this package in the Journal of Statistical Software for more details: <doi:10.18637/jss.v107.i03>. Note that with version 2.0.0 sweeping changes were introduced which greatly improve functionality and usability but break backwards compatibility.
Stanford ATLAS (Advanced Temporal Search Engine) is a powerful tool that allows constructing cohorts of patients extremely quickly and efficiently. This package is designed to interface directly with an instance of ATLAS search engine and facilitates API queries and data dumps. Prerequisite is a good knowledge of the temporal language to be able to efficiently construct a query. More information available at <https://shahlab.stanford.edu/start>.
This package provides functions to combine data on voting blocs size, turnout, and vote choice to estimate each bloc's vote contributions to the Democratic and Republican parties. The package also includes functions for uncertainty estimation and plotting. Users may define voting blocs along a discrete or continuous variable. The package implements methods described in Grimmer, Marble, and Tanigawa-Lau (2023) <doi:10.31235/osf.io/c9fkg>.
This package provides a toolbox for developing applications, games, simulations, or agent-based models in the R terminal. Included functions allow users to move the cursor around the terminal screen, change text colors and attributes, clear the screen, hide and show the cursor, map key presses to functions, draw shapes and curves, among others. Most functionalities require users to be in a terminal (not the R GUI).
CLUster Evaluation (CLUE) is a computational method for identifying optimal number of clusters in a given time-course dataset clustered by cmeans or kmeans algorithms and subsequently identify key kinases or pathways from each cluster. Its implementation in R is called ClueR
. See README on <https://github.com/PYangLab/ClueR>
for more details. P Yang et al. (2015) <doi:10.1371/journal.pcbi.1004403>.
Compute distributional quantities for an Integrated Gamma (IG) or Integrated Gamma Limit (IGL) copula, such as a cdf and density. Compute corresponding conditional quantities such as the cdf and quantiles. Generate data from an IG or IGL copula. See the vignette for formulas, or for a derivation, see Coia, V (2017) "Forecasting of Nonlinear Extreme Quantiles Using Copula Models." PhD
Dissertation, The University of British Columbia.
Implementation of some of the formulations for the thermodynamic and transport properties released by the International Association for the Properties of Water and Steam (IAPWS). More specifically, the releases R1-76(2014), R5-85(1994), R6-95(2018), R7-97(2012), R8-97, R9-97, R10-06(2009), R11-07(2019), R12-08, R15-11, R16-17(2018), R17-20 and R18-21 at <http://iapws.org>.
Gaussian process regression with an emphasis on kernels. Quantitative and qualitative inputs are accepted. Some pre-defined kernels are available, such as radial or tensor-sum for quantitative inputs, and compound symmetry, low rank, group kernel for qualitative inputs. The user can define new kernels and composite kernels through a formula mechanism. Useful methods include parameter estimation by maximum likelihood, simulation, prediction and leave-one-out validation.
This package provides a new method to implement clustering from multiple modality data of certain samples, the function M2SMF()
jointly factorizes multiple similarity matrices into a shared sub-matrix and several modality private sub-matrices, which is further used for clustering. Along with this method, we also provide function to calculate the similarity matrix and function to evaluate the best cluster number from the original data.
Fit and analysis of finite Mixtures of Mallows models with Spearman Distance for full and partial rankings with arbitrary missing positions. Inference is conducted within the maximum likelihood framework via Expectation-Maximization algorithms. Estimation uncertainty is tackled via diverse versions of bootstrapped and asymptotic confidence intervals. The most relevant reference of the methods is Crispino, Mollica, Astuti and Tardella (2023) <doi:10.1007/s11222-023-10266-8>.
Model fitting, sampling and visualization for the (Hidden) Markov Random Field model with pairwise interactions and general interaction structure from Freguglia, Garcia & Bicas (2020) <doi:10.1002/env.2613>, which has many popular models used in 2-dimensional lattices as particular cases, like the Ising Model and Potts Model. A complete manuscript describing the package is available in Freguglia & Garcia (2022) <doi:10.18637/jss.v101.i08>.
This package provides some easy-to-use functions for time series analyses of (plant-) phenological data sets. These functions mainly deal with the estimation of combined phenological time series and are usually wrappers for functions that are already implemented in other R packages adapted to the special structure of phenological data and the needs of phenologists. Some date conversion functions to handle Julian dates are also provided.