Genealogical data analysis including descriptive statistics (e.g., kinship and inbreeding coefficients) and gene-dropping simulations. See: "GENLIB: an R package for the analysis of genealogical data" Gauvin et al. (2015) <doi:10.1186/s12859-015-0581-5>.
Helper functions designed to make dynamically generating R Markdown documents easier by providing a simple and tidy way to create report pieces, shape them to your data, and combine them for exporting into a single R Markdown document.
This package provides datasets and functions for the class "Modelling and Data Analysis for Pharmaceutical Sciences". The datasets can be used to present various methods of data analysis and statistical modeling. Functions for data visualization are also implemented.
Runtime for serving containers that can execute R code on the AWS Lambda serverless compute service <https://aws.amazon.com/lambda/>. Provides the necessary functionality for handling the various endpoints required for accepting new input and sending responses.
Automation tool to run R scripts if needed, based on last modified time. It comes with no package dependencies, organizational overhead, or structural requirements. In short: run an R script if underlying files have changed, otherwise do nothing.
Allows users to derive multi-objective weights from pairwise comparisons, which research shows is more repeatable, transparent, and intuitive other techniques. These weights can be rank existing alternatives or to define a multi-objective utility function for optimization.
This package contains tools for supervised analyses of incomplete, overlapping multiomics datasets. Applies partial least squares in multiple steps to find models that predict survival outcomes. See Yamaguchi et al. (2023) <doi:10.1101/2023.03.10.532096>.
Access the Public Transport Victoria Timetable API <https://www.ptv.vic.gov.au/footer/data-and-reporting/datasets/ptv-timetable-api/>, with results returned as familiar R data structures. Retrieve information on stops, routes, disruptions, departures, and more.
Perform permutation-based hypothesis testing for randomized experiments as suggested in Ludbrook & Dudley (1998) <doi:10.2307/2685470> and Ernst (2004) <doi:10.1214/088342304000000396>, introduced in Pham et al. (2022) <doi:10.1016/j.chemosphere.2022.136736>.
Select optimal functional regression or dichotomized quantile predictors for survival/logistic/numeric outcome and perform optimistic bias correction for any optimally dichotomized numeric predictor(s), as in Yi, et. al. (2023) <doi:10.1016/j.labinv.2023.100158>.
Proposes application of spectral analysis and jack-knife resampling for multivariate sequence forecasting. The application allows for a fast random search in a compact space of hyper-parameters composed by Sequence Length and Jack-Knife Leave-N-Out.
An interface to the Python package stanza <https://stanfordnlp.github.io/stanza/index.html>. stanza is a Python NLP library for many human languages. It contains support for running various accurate natural language processing tools on 60+ languages.
Identifies the name of the current script in a variety of contexts, e.g. interactively or when sourced. Attempts to support RStudio environment. Based on <https://stackoverflow.com/a/32016824/2292993> and <https://stackoverflow.com/a/35842176/2292993>.
This package provides a fast and adaptable tool to convert photos and images into usable colour schemes for data visualisation. Contains functionality to extract colour palettes from images, as well for the conversion of images between colour spaces.
This package provides tools for computing various vector summaries of persistence diagrams studied in Topological Data Analysis. For improved computational efficiency, all code for the vector summaries is written in C++ using the Rcpp and RcppArmadillo packages.
Tool-set of modules for creating web-based applications that use plot based strategies to visualize and analyze multi-omics data. This package utilizes the shiny and plotly frameworks to provide a user friendly dashboard for interactive plotting.
STK++ <http://www.stkpp.org> is a collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen'-like API), regression, dimension reduction, etc. The integration of the library to R is using Rcpp'. The rtkore package includes the header files from the STK++ core library. All files contain only template classes and/or inline functions. STK++ is licensed under the GNU LGPL version 2 or later. rtkore (the stkpp integration into R') is licensed under the GNU GPL version 2 or later. See file LICENSE.note for details.
redumper is a low-level byte perfect CD disc dumper. It supports incremental dumps, advanced SCSI/C2 repair, intelligent audio CD offset detection, among other features. redumper is also a general purpose DVD/HD-DVD/Blu-ray disc dumper.
Haplotype-aware Hidden Markov Model for RNA (HaHMMR) is a method for detecting copy number variations (CNVs) from bulk RNA-seq data. Additional examples, documentations, and details on the method are available at https://github.com/kharchenkolab/hahmmr/.
Lefser is an implementation in R of the popular "LDA Effect Size" (LEfSe) method for microbiome biomarker discovery. It uses the Kruskal-Wallis test, Wilcoxon-Rank Sum test, and Linear Discriminant Analysis to find biomarkers of groups and sub-groups.
This package provides a data.table backend for dplyr. The goal of dtplyr is to allow you to write dplyr code that is automatically translated to the equivalent, but usually much faster, data.table code.
This package provides procedures to answer the following questions: How much ram do you need to store a 100,000 by 100,000 matrix? How much ram is your current R session using? How much ram do you even have?
This package provides a functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data.
This package is a collection of miscellaneous utility functions, supporting data transformation tasks like recoding, dichotomizing or grouping variables, setting and replacing missing values. The data transformation functions also support labelled data, and all integrate seamlessly into a tidyverse workflow.