DEMAND predicts Drug MoA
by interrogating a cell context specific regulatory network with a small number (N >= 6) of compound-induced gene expression signatures, to elucidate specific proteins whose interactions in the network is dysregulated by the compound.
epiNEM
is an extension of the original Nested Effects Models (NEM). EpiNEM
is able to take into account double knockouts and infer more complex network signalling pathways. It is tailored towards large scale double knock-out screens.
Extract metadata from NetCDF
data sources; these can be files, file handles or servers. This package leverages and extends the lower level functions of the RNetCDF package providing a consistent set of functions that all return data frames.
This package allows clinicians to predict the rate and severity of future acute exacerbation in Chronic Obstructive Pulmonary Disease (COPD) patients, based on the clinical prediction model published in Adibi et al. (2019) doi:10.1101/651901.
The main aim of the pander R package is to provide a minimal and easy tool for rendering R objects into Pandoc's markdown. The package is also capable of exporting/converting complex Pandoc documents (reports) in various ways.
This package estimates the matrix of partial correlations based on different regularized regression methods: lasso, adaptive lasso, PLS, and Ridge Regression. In addition, the package provides model selection for lasso, adaptive lasso and Ridge regression based on cross-validation.
Estimate quantile regression (QR) and composite quantile regression (cqr) and with adaptive lasso penalty using interior point (IP), majorize and minimize (MM), coordinate descent (CD), and alternating direction method of multipliers algorithms (ADMM).
This is a package for curve, surface and function fitting with an emphasis on splines, spatial data and spatial statistics. The major methods include cubic, and thin plate splines, Kriging, and compactly supported covariance functions for large data sets.
Supports calculations and visualization for renewable power systems and the environment. Analysis and graphical tools for DC and AC circuits and their use in electric power systems. Analysis and graphical tools for thermodynamic cycles and heat engines, supporting efficiency calculations in coal-fired power plants, gas-fired power plants. Calculations of carbon emissions and atmospheric CO2 dynamics. Analysis of power flow and demand for the grid, as well as power models for microgrids and off-grid systems. Provides resource and power generation for hydro power, wind power, and solar power.
STK++ <http://www.stkpp.org> is a collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen'-like API), regression, dimension reduction, etc. The integration of the library to R is using Rcpp'. The rtkore package includes the header files from the STK++ core library. All files contain only template classes and/or inline functions. STK++ is licensed under the GNU LGPL version 2 or later. rtkore (the stkpp integration into R') is licensed under the GNU GPL version 2 or later. See file LICENSE.note for details.
RepViz
enables the view of a genomic region in a simple and efficient way. RepViz
allows simultaneous viewing of both intra- and intergroup variation in sequencing counts of the studied conditions, as well as their comparison to the output features (e.g. identified peaks) from user selected data analysis methods.The RepViz
tool is primarily designed for chromatin data such as ChIP-seq
and ATAC-seq, but can also be used with other sequencing data such as RNA-seq, or combinations of different types of genomic data.
This package performs simple and canonical CA (covariates on rows/columns) on a two-way frequency table (with missings) by means of SVD. Different scaling methods (standard, centroid, Benzecri, Goodman) as well as various plots including confidence ellipsoids are provided.
This is a simple and powerful package to create, render, preview, and deploy documentation websites for R packages. It is a lightweight and flexible alternative to pkgdown', with support for many documentation generators, including Quarto', Docute', Docsify', and MkDocs
'.
Implementation of the BC3NET algorithm for gene regulatory network inference (de Matos Simoes and Frank Emmert-Streib, Bagging Statistical Network Inference from Large-Scale Gene Expression Data, PLoS
ONE 7(3): e33624, <doi:10.1371/journal.pone.0033624>).
This package provides tools for interacting with the Circle CI API (<https://circleci.com/docs/api/v2/>). Besides executing common tasks such as querying build logs and restarting builds, this package also helps setting up permissions to deploy from builds.
This package implements lasso and ridge regression for dichotomised outcomes (<doi:10.1080/02664763.2023.2233057>), i.e., numerical outcomes that were transformed to binary outcomes. Such artificial binary outcomes indicate whether an underlying measurement is greater than a threshold.
As a distributed imputation strategy, the Distributed full information Multiple Imputation method is developed to impute missing response variables in distributed linear regression. The philosophy of the package is described in Guo (2025) <doi:10.1038/s41598-025-93333-6>.
Models for analyzing site occupancy and count data models with detection error, including single-visit based models, conditional distance sampling and time-removal models. Package development was supported by the Alberta Biodiversity Monitoring Institute and the Boreal Avian Modelling Project.
Datasets and functions that can be used for data analysis practice, homework and projects in data science courses and workshops. 26 datasets are available for case studies in data visualization, statistical inference, modeling, linear regression, data wrangling and machine learning.
Estimates probabilistic phylogenetic Principal Component Analysis (PCA) and non-phylogenetic probabilistic PCA. Provides methods to implement alternative models of trait evolution including Brownian motion (BM), Ornstein-Uhlenbeck (OU), Early Burst (EB), and Pagel's lambda. Also provides flexible biplot functions.
This package provides tools for simulating from discrete-time individual level models for infectious disease data analysis. This epidemic model class contains spatial and contact-network based models with two disease types: Susceptible-Infectious (SI) and Susceptible-Infectious-Removed (SIR).
This package provides EIOPA (European Insurance And Occupational Pensions Authority) risk-free rates. Please note that the author of this package is not affiliated with EIOPA. The data is accessed through a REST API available at <https://mehdiechchelh.com/api/>.
This package provides a collection of features, decomposition methods, statistical summaries and graphics functions for the analysing tidy time series data. The package name feasts is an acronym comprising of its key features: Feature Extraction And Statistics for Time Series.
Simplifies the creation and customization of forest plots (alternatively called dot-and-whisker plots). Input classes accepted by forplo are data.frame, matrix, lm, glm, and coxph. forplo was written in base R and does not depend on other packages.