The Brazilian system for diploma registration and validation on technical and superior courses are managing by Sistec platform, see <https://sistec.mec.gov.br/>. This package provides tools for Brazilian institutions to update the student's registration and make data analysis about their situation, retention and drop out.
This package provides a framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.
This package provides a collection of simple parameter estimation and tests for the comparison of multivariate means and variation, to accompany Chapters 4 and 5 of the book Multivariate Statistical Methods. A Primer (5th edition), by Manly BFJ, Navarro Alberto JA & Gerow K (2024) <doi:10.1201/9781003453482>.
Statistical analysis methods for environmental data are implemented. There is a particular focus on robust methods, and on methods for compositional data. In addition, larger data sets from geochemistry are provided. The statistical methods are described in Reimann, Filzmoser, Garrett, Dutter (2008, ISBN:978-0-470-98581-6).
Helper functions to easily add functionality to functions. The package can assign functions to have an lazy evaluation allowing you to save and update the arguments before and after each function call. You can set a temporary working directory within functions and wrap console messages around other functions.
Tool for analysis of codon usage in various unannotated or KEGG/COG annotated DNA sequences. Calculates different measures of CU bias and CU-based predictors of gene expressivity, and performs gene set enrichment analysis for annotated sequences. Implements several methods for visualization of CU and enrichment analysis results.
Harman is a PCA and constrained optimisation based technique that maximises the removal of batch effects from datasets, with the constraint that the probability of overcorrection (i.e. removing genuine biological signal along with batch noise) is kept to a fraction which is set by the end-user.
With the dedicated fortify method implemented for flowSet, ncdfFlowSet and GatingSet classes, both raw and gated flow cytometry data can be plotted directly with ggplot. The ggcyto wrapper and some custom layers also make it easy to add gates and population statistics to the plot.
CelliD is a clustering-free method for extracting per-cell gene signatures from scRNA-seq. CelliD allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and single-cell omics protocols. The package can also be used to explore functional pathways enrichment in single cell data.
This package provides a set of little functions that have been found useful to do little odds and ends such as plotting the results of K-means clustering, substituting special text characters, viewing parts of a data.frame, constructing formulas from text and building design and response matrices.
The GNU readline library allows users to edit command lines as they are typed in. It can maintain a searchable history of previously entered commands, letting you easily recall, edit and re-enter past commands. It features both Emacs-like and vi-like keybindings, making its usage comfortable for anyone.
The GNU readline library allows users to edit command lines as they are typed in. It can maintain a searchable history of previously entered commands, letting you easily recall, edit and re-enter past commands. It features both Emacs-like and vi-like keybindings, making its usage comfortable for anyone.
The GNU readline library allows users to edit command lines as they are typed in. It can maintain a searchable history of previously entered commands, letting you easily recall, edit and re-enter past commands. It features both Emacs-like and vi-like keybindings, making its usage comfortable for anyone.
The kappa statistic implemented by Fleiss is a very popular index for assessing the reliability of agreement among multiple observers. It is used both in the psychological and in the psychiatric field. Other fields of application are typically medicine, biology and engineering. Unfortunately,the kappa statistic may behave inconsistently in case of strong agreement between raters, since this index assumes lower values than it would have been expected. We propose a modification kappa implemented by Fleiss in case of nominal and ordinal variables. Monte Carlo simulations are used both to testing statistical hypotheses and to calculating percentile bootstrap confidence intervals based on proposed statistic in case of nominal and ordinal data.
Mass cytometry enables the simultaneous measurement of dozens of protein markers at the single-cell level, producing high dimensional datasets that provide deep insights into cellular heterogeneity and function. However, these datasets often contain unwanted covariance introduced by technical variations, such as differences in cell size, staining efficiency, and instrument-specific artifacts, which can obscure biological signals and complicate downstream analysis. This package addresses this challenge by implementing a robust framework of linear models designed to identify and remove these sources of unwanted covariance. By systematically modeling and correcting for technical noise, the package enhances the quality and interpretability of mass cytometry data, enabling researchers to focus on biologically relevant signals.
Obtain network structures from animal GPS telemetry observations and statistically analyse them to assess their adequacy for social network analysis. Methods include pre-network data permutations, bootstrapping techniques to obtain confidence intervals for global and node-level network metrics, and correlation and regression analysis of the local network metrics.
This package provides functions for estimating the attributable burden of disease due to risk factors. The posterior simulation is performed using arm::sim as described in Gelman, Hill (2012) <doi:10.1017/CBO9780511790942> and the attributable burden method is based on Nielsen, Krause, Molbak <doi:10.1111/irv.12564>.
This package provides equations commonly used in clinical pharmacokinetics and clinical pharmacology, such as equations for dose individualization, compartmental pharmacokinetics, drug exposure, anthropomorphic calculations, clinical chemistry, and conversion of common clinical parameters. Where possible and relevant, it provides multiple published and peer-reviewed equations within the respective R function.
Implementation of two-dimensional (2D) correlation analysis based on the Fourier-transformation approach described by Isao Noda (I. Noda (1993) <DOI:10.1366/0003702934067694>). Additionally there are two plot functions for the resulting correlation matrix: The first one creates colored 2D plots, while the second one generates 3D plots.
Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS 2016.
This package provides tools for modelling electric vehicle charging sessions into generic groups with similar connection patterns called "user profiles", using Gaussian Mixture Models clustering. The clustering and profiling methodology is described in Cañigueral and Meléndez (2021, ISBN:0142-0615) <doi:10.1016/j.ijepes.2021.107195>.
Estimates RxC (R by C) vote transfer matrices (ecological contingency tables) from aggregate data by simultaneously minimizing Euclidean row-standardized unit-to-global distances. Acknowledgements: The authors wish to thank Generalitat Valenciana, Consellerà a de Educación, Cultura, Universidades y Empleo (grant CIAICO/2023/031) for supporting this research.
Conducts hierarchical partitioning to calculate individual contributions of each predictor towards adjusted R2 and explained deviance for generalized additive models based on output of gam() and bam() in mgcv package, applying the algorithm in this paper: Lai(2024) <doi:10.1016/j.pld.2024.06.002>.
After being given the location of your students submissions and a test file, the function runs each .R file, and evaluates the results from all the given tests. Results are neatly returned in a data frame that has a row for each student, and a column for each test.