This package provides a dplyr back end for databases that allows you to work with remote database tables as if they are in-memory data frames. Basic features works with any database that has a DBI back end; more advanced features require SQL translation to be provided by the package author.
An interface between the GRASS geographical information system ('GIS') and R', based on starting R from within the GRASS GIS environment, or running a free-standing R session in a temporary GRASS location; the package provides facilities for using all GRASS commands from the R command line. The original interface package for GRASS 5 (2000-2010) is described in Bivand (2000) <doi:10.1016/S0098-3004(00)00057-1> and Bivand (2001) <https://www.r-project.org/conferences/DSC-2001/Proceedings/Bivand.pdf>. This was succeeded by spgrass6 for GRASS 6 (2006-2016) and rgrass7 for GRASS 7 (2015-present). The rgrass package modernizes the interface for GRASS 8 while still permitting the use of GRASS 7'.
Efficiently processes relational event history data and transforms them into formats suitable for other packages. The primary objective of this package is to convert event history data into a format that integrates with the packages in remverse and is compatible with various analytical tools (e.g., computing network statistics, estimating tie-oriented or actor-oriented social network models). Second, it can also transform the data into formats compatible with other packages out of remverse'. The package processes the data for two types of temporal social network models: tie-oriented modeling framework (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) and actor-oriented modeling framework (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>).
Deals with the braid groups. Includes creation of some specific braids, group operations, free reduction, and Bronfman polynomials. Braid theory has applications in fluid mechanics and quantum physics. The code is adapted from the Haskell library combinat', and is based on Birman and Brendle (2005) <doi:10.48550/arXiv.math/0409205>.
This package provides R routine for the so called two-sample Cramer-Test. This nonparametric two-sample-test on equality of the underlying distributions can be applied to multivariate data as well as univariate data. It offers two possibilities to approximate the critical value both of which are included in this package.
Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) while allowing the updating of predictors or response so that BART can be incorporated as a conditional model in a Gibbs/Metropolis-Hastings sampler. Also serves as a drop-in replacement for package BayesTree'.
R codes for distance based cell lineage reconstruction. Our methods won both sub-challenges 2 and 3 of the Allen Institute Cell Lineage Reconstruction DREAM Challenge in 2020. References: Gong et al. (2021) <doi:10.1016/j.cels.2021.05.008>, Gong et al. (2022) <doi:10.1186/s12859-022-04633-x>.
This package provides a tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-to-event primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.
The fastai <https://docs.fast.ai/index.html> library simplifies training fast and accurate neural networks using modern best practices. It is based on research in to deep learning best practices undertaken at fast.ai', including out of the box support for vision, text, tabular, audio, time series, and collaborative filtering models.
This package provides methods and functions for fitting ordinary differential equations (ODE) model in R'. Sensitivity equations are used to compute the gradients of ODE trajectories with respect to underlying parameters, which in turn allows for more stable fitting. Other fitting methods, such as MCMC (Markov chain Monte Carlo), are also available.
For supersonic aircraft, flying subsonic over land, find the best route between airports. Allow for coastal buffer and potentially closed regions. Use a minimal model of aircraft performance: the focus is on time saved versus subsonic flight, rather than on vertical flight profile. For modelling and forecasting, not for planning your flight!
This package provides tools for estimating uncertainty in individual polygenic risk scores (PRSs) using both sampling-based and analytical methods, as well as the Best Linear Unbiased Estimator (BLUE). These methods quantify variability in PRS estimates for both binary and quantitative traits. See Henderson (1975) <doi:10.2307/2529430> for more details.
This package provides functions to simulate data from large-scale educational assessments, including background questionnaire data and cognitive item responses that adhere to a multiple-matrix sampled design. The theoretical foundation can be found on Matta, T.H., Rutkowski, L., Rutkowski, D. et al. (2018) <doi:10.1186/s40536-018-0068-8>.
This package implements the kK-NN algorithm, an adaptive k-nearest neighbor classifier that adjusts the neighborhood size based on local data curvature. The method estimates local Gaussian curvature by approximating the shape operator of the data manifold. This approach aims to improve classification performance, particularly in datasets with limited samples.
Approximate node interaction parameters of Markov Random Fields graphical networks. Models can incorporate additional covariates, allowing users to estimate how interactions between nodes in the graph are predicted to change across covariate gradients. The general methods implemented in this package are described in Clark et al. (2018) <doi:10.1002/ecy.2221>.
Topological data analysis (TDA) is a method of data analysis that uses techniques from topology to analyze high-dimensional data. Here we implement Mapper, an algorithm from this area developed by Singh, Mémoli and Carlsson (2007) which generalizes the concept of a Reeb graph <https://en.wikipedia.org/wiki/Reeb_graph>.
Estimation of the survivor function for interval censored time-to-event data subject to misclassification using nonparametric maximum likelihood estimation, implementing the methods of Titman (2017) <doi:10.1007/s11222-016-9705-7>. Misclassification probabilities can either be specified as fixed or estimated. Models with time dependent misclassification may also be fitted.
This package provides general purpose tools for helping users to implement steepest gradient descent methods for function optimization; for details see Ruder (2016) <arXiv:1609.04747v2>. Currently, the Steepest 2-Groups Gradient Descent and the Adaptive Moment Estimation (Adam) are the methods implemented. Other methods will be implemented in the future.
Analysis of molecular marker data from model and non-model systems. For the later, it allows statistical analysis by simultaneously estimating linkage and linkage phases (genetic map construction) according to Wu and colleagues (2002) <doi:10.1006/tpbi.2002.1577>. All analysis are based on multi-point approaches using hidden Markov models.
Model selection for penalized graphical models using the Stability Approach to Regularization Selection ('StARS'), with options for speed-ups including Bounded StARS (B-StARS), batch computing, and other stability metrics (e.g., graphlet stability G-StARS). Christian L. Müller, Richard Bonneau, Zachary Kurtz (2016) <arXiv:1605.07072>.
In base R, object attributes are lost when objects are modified by common data operations such as subset, filter, slice, append, extract etc. This packages allows objects to be marked as sticky and have attributes persisted during these operations or when inserted into or extracted from list-like or table-like objects.
Testing for Spatial Dependence of Qualitative Data in Cross Section. The list of functions includes join-count tests, Q test, spatial scan test, similarity test and spatial runs test. The methodology of these models can be found in <doi:10.1007/s10109-009-0100-1> and <doi:10.1080/13658816.2011.586327>.
Computerized Adaptive Testing simulations with dichotomous and polytomous items. Selects items with Maximum Fisher Information method or randomly, with or without constraints (content balancing and item exposure control). Evaluates the simulation results in terms of precision, item exposure, and test length. Inspired on Magis & Barrada (2017) <doi:10.18637/jss.v076.c01>.
Create panel data consisting of independent states from 1816 to the present. The package includes the Gleditsch & Ward (G&W) and Correlates of War (COW) lists of independent states, as well as helper functions for working with state panel data and standardizing other data sources to create country-year/month/etc. data.