_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-select 1.4
Propagated dependencies: r-rsolnp@1.16 r-latticeextra@0.6-30 r-lattice@0.22-6 r-fd@1.0-12.3 r-ade4@1.7-22
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=Select
Licenses: GPL 2+
Synopsis: Determines Species Probabilities Based on Functional Traits
Description:

The objective of these functions is to derive a species assemblage that satisfies a functional trait profile. Restoring resilient ecosystems requires a flexible framework for selecting assemblages that are based on the functional traits of species. However, current trait-based models have been limited to algorithms that can only select species by optimising specific trait values, and could not elegantly accommodate the common desire among restoration ecologists to produce functionally diverse assemblages. We have solved this problem by applying a non-linear optimisation algorithm that optimises Rao Q, a closed-form functional trait diversity index that incorporates species abundances, subject to other linear constraints. This framework generalises previous models that only optimised the entropy of the community, and can optimise both functional diversity and entropy simultaneously. This package can also be used to generate experimental assemblages to test the effects of community-level traits on community dynamics and ecosystem function. The method is based on theory discussed in Laughlin (2014, Ecology Letters) <doi.org/10.1111/ele.12288>.

r-sgraph 1.1.0
Propagated dependencies: r-stringi@1.8.4 r-rcolorbrewer@1.1-3 r-magrittr@2.0.3 r-jsonlite@1.8.9 r-igraph@2.1.1 r-htmlwidgets@1.6.4 r-ggplot2@3.5.1 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gitlab.com/thomaschln/sgraph
Licenses: GPL 3
Synopsis: Network Visualization Using 'sigma.js'
Description:

Interactive visualizations of graphs created with the igraph package using a htmlwidgets wrapper for the sigma.js network visualization v2.4.0 <https://www.sigmajs.org/>, enabling to display several thousands of nodes. While several R packages have been developed to interface sigma.js', all were developed for v1.x.x and none have migrated to v2.4.0 nor are they planning to. This package builds upon the sigmaNet package, and users familiar with it will recognize the similar design approach. Two extensions have been added to the classic sigma.js visualizations by overriding the underlying JavaScript code, enabling to draw a frame around node labels, and to display labels on multiple lines by parsing line breaks. Other additional functionalities that did not require overriding sigma.js code include toggling node visibility when clicked using a node attribute and highlighting specific edges. sigma.js is currently preparing a stable release v3.0.0, and this package plans to update to it when it is available.

r-chnosz 2.1.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.chnosz.net/
Licenses: GPL 3
Synopsis: Thermodynamic Calculations and Diagrams for Geochemistry
Description:

An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also implements a group additivity algorithm for the standard thermodynamic properties of proteins.

r-glarma 1.7-1
Propagated dependencies: r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glarma
Licenses: GPL 2+
Synopsis: Generalized Linear Autoregressive Moving Average Models
Description:

This package provides functions are provided for estimation, testing, diagnostic checking and forecasting of generalized linear autoregressive moving average (GLARMA) models for discrete valued time series with regression variables. These are a class of observation driven non-linear non-Gaussian state space models. The state vector consists of a linear regression component plus an observation driven component consisting of an autoregressive-moving average (ARMA) filter of past predictive residuals. Currently three distributions (Poisson, negative binomial and binomial) can be used for the response series. Three options (Pearson, score-type and unscaled) for the residuals in the observation driven component are available. Estimation is via maximum likelihood (conditional on initializing values for the ARMA process) optimized using Fisher scoring or Newton Raphson iterative methods. Likelihood ratio and Wald tests for the observation driven component allow testing for serial dependence in generalized linear model settings. Graphical diagnostics including model fits, autocorrelation functions and probability integral transform residuals are included in the package. Several standard data sets are included in the package.

r-karlen 0.0.2
Propagated dependencies: r-tibble@3.2.1
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://rmagno.eu/karlen/
Licenses: FSDG-compatible
Synopsis: Real-Time PCR Data Sets by Karlen et al. (2007)
Description:

Real-time quantitative polymerase chain reaction (qPCR) data sets by Karlen et al. (2007) <doi:10.1186/1471-2105-8-131>. Provides one single tabular tidy data set in long format, encompassing 32 dilution series, for seven PCR targets and four biological samples. The targeted amplicons are within the murine genes: Cav1, Ccn2, Eln, Fn1, Rpl27, Hspg2, and Serpine1, respectively. Dilution series: scheme 1 (Cav1, Eln, Hspg2, Serpine1): 1-fold, 10-fold, 50-fold, and 100-fold; scheme 2 (Ccn2, Rpl27, Fn1): 1-fold, 10-fold, 50-fold, 100-fold and 1000-fold. For each concentration there are five replicates, except for the 1000-fold concentration, where only two replicates were performed. Each amplification curve is 40 cycles long. Original raw data file is Additional file 2 from "Statistical significance of quantitative PCR" by Y. Karlen, A. McNair, S. Perseguers, C. Mazza, and N. Mermod (2007) <https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-8-131/MediaObjects/12859_2006_1503_MOESM2_ESM.ZIP>.

r-lme4gs 0.1
Propagated dependencies: r-matrix@1.7-1 r-lme4@1.1-35.5
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lme4GS
Licenses: GPL 2+
Synopsis: 'lme4' for Genomic Selection
Description:

Flexible functions that use lme4 as computational engine for fitting models used in Genomic Selection (GS). GS is a technology used for genetic improvement, and it has many advantages over phenotype-based selection. There are several statistical models that adequately approach the statistical challenges in GS, such as in linear mixed models (LMMs). The lme4 is the standard package for fitting linear and generalized LMMs in the R-package, but its use for genetic analysis is limited because it does not allow the correlation between individuals or groups of individuals to be defined. The lme4GS package is focused on fitting LMMs with covariance structures defined by the user, bandwidth selection, and genomic prediction. The new package is focused on genomic prediction of the models used in GS and can fit LMMs using different variance-covariance matrices. Several examples of GS models are presented using this package as well as the analysis using real data. For more details see Caamal-Pat et.al. (2021) <doi:10.3389/fgene.2021.680569>.

r-swdpwr 1.11
Propagated dependencies: r-spatstat-random@3.3-2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=swdpwr
Licenses: GPL 3
Synopsis: Power Calculation for Stepped Wedge Cluster Randomized Trials
Description:

To meet the needs of statistical power calculation for stepped wedge cluster randomized trials, we developed this software. Different parameters can be specified by users for different scenarios, including: cross-sectional and cohort designs, binary and continuous outcomes, marginal (GEE) and conditional models (mixed effects model), three link functions (identity, log, logit links), with and without time effects (the default specification assumes no-time-effect) under exchangeable, nested exchangeable and block exchangeable correlation structures. Unequal numbers of clusters per sequence are also allowed. The methods included in this package: Zhou et al. (2020) <doi:10.1093/biostatistics/kxy031>, Li et al. (2018) <doi:10.1111/biom.12918>. Supplementary documents can be found at: <https://ysph.yale.edu/cmips/research/software/study-design-power-calculation/swdpwr/>. The Shiny app for swdpwr can be accessed at: <https://jiachenchen322.shinyapps.io/swdpwr_shinyapp/>. The package also includes functions that perform calculations for the intra-cluster correlation coefficients based on the random effects variances as input variables for continuous and binary outcomes, respectively.

r-driver 0.4.1
Propagated dependencies: r-txdb-hsapiens-ucsc-hg38-knowngene@3.20.0 r-txdb-hsapiens-ucsc-hg19-knowngene@3.2.2 r-s4vectors@0.44.0 r-rlang@1.1.4 r-randomforest@4.7-1.2 r-org-hs-eg-db@3.20.0 r-genomicranges@1.58.0 r-genomicfeatures@1.58.0 r-genomeinfodb@1.42.0 r-caret@6.0-94
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://egeulgen.github.io/driveR/
Licenses: Expat
Synopsis: Prioritizing Cancer Driver Genes Using Genomics Data
Description:

Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. driveR is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, driveR uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, phenolyzer gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.

r-hemdag 2.7.4
Propagated dependencies: r-rbgl@1.82.0 r-preprocesscore@1.68.0 r-precrec@0.14.4 r-plyr@1.8.9 r-graph@1.84.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HEMDAG
Licenses: GPL 3+
Synopsis: Hierarchical Ensemble Methods for Directed Acyclic Graphs
Description:

An implementation of several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs). HEMDAG package: 1) reconciles flat predictions with the topology of the ontology; 2) can enhance the predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes; 3) provides biologically meaningful predictions that always obey the true-path-rule, the biological and logical rule that governs the internal coherence of biomedical ontologies; 4) is specifically designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs; 5) scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples; 6) provides several utility functions to process and analyze graphs; 7) provides several performance metrics to evaluate HEMs algorithms. (Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini (2017) <doi:10.1186/s12859-017-1854-y>).

r-ordcrm 1.0.0
Propagated dependencies: r-rms@6.8-2
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=ordcrm
Licenses: GPL 2+
Synopsis: Likelihood-Based Continual Reassessment Method (CRM) Dose Finding Designs
Description:

This package provides the setup and calculations needed to run a likelihood-based continual reassessment method (CRM) dose finding trial and performs simulations to assess design performance under various scenarios. 3 dose finding designs are included in this package: ordinal proportional odds model (POM) CRM, ordinal continuation ratio (CR) model CRM, and the binary 2-parameter logistic model CRM. These functions allow customization of design characteristics to vary sample size, cohort sizes, target dose-limiting toxicity (DLT) rates, discrete or continuous dose levels, combining ordinal grades 0 and 1 into one category, and incorporate safety and/or stopping rules. For POM and CR model designs, ordinal toxicity grades are specified by common terminology criteria for adverse events (CTCAE) version 4.0. Function pseudodata creates the necessary starting models for these 3 designs, and function nextdose estimates the next dose to test in a cohort of patients for a target DLT rate. We also provide the function crmsimulations to assess the performance of these 3 dose finding designs under various scenarios.

r-apollo 0.3.5
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-rstudioapi@0.17.1 r-rsolnp@1.16 r-rsghb@1.2.2 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-randtoolbox@2.0.5 r-numderiv@2016.8-1.1 r-mvtnorm@1.3-2 r-mnormt@2.1.1 r-maxlik@1.5-2.1 r-matrixstats@1.4.1 r-deriv@4.1.6 r-coda@0.19-4.1 r-cli@3.6.3 r-bgw@0.1.3
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: http://www.apolloChoiceModelling.com
Licenses: GPL 2
Synopsis: Tools for Choice Model Estimation and Application
Description:

Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <http://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.

r-geecrt 1.1.3
Propagated dependencies: r-rootsolve@1.8.2.4 r-mvtnorm@1.3-2 r-mass@7.3-61
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=geeCRT
Licenses: GPL 2+
Synopsis: Bias-Corrected GEE for Cluster Randomized Trials
Description:

Population-averaged models have been increasingly used in the design and analysis of cluster randomized trials (CRTs). To facilitate the applications of population-averaged models in CRTs, the package implements the generalized estimating equations (GEE) and matrix-adjusted estimating equations (MAEE) approaches to jointly estimate the marginal mean models correlation models both for general CRTs and stepped wedge CRTs. Despite the general GEE/MAEE approach, the package also implements a fast cluster-period GEE method by Li et al. (2022) <doi:10.1093/biostatistics/kxaa056> specifically for stepped wedge CRTs with large and variable cluster-period sizes and gives a simple and efficient estimating equations approach based on the cluster-period means to estimate the intervention effects as well as correlation parameters. In addition, the package also provides functions for generating correlated binary data with specific mean vector and correlation matrix based on the multivariate probit method in Emrich and Piedmonte (1991) <doi:10.1080/00031305.1991.10475828> or the conditional linear family method in Qaqish (2003) <doi:10.1093/biomet/90.2.455>.

r-haplin 7.3.2
Propagated dependencies: r-rlang@1.1.4 r-mgcv@1.9-1 r-mass@7.3-61 r-ff@4.5.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://haplin.bitbucket.io
Licenses: GPL 2+
Synopsis: Analyzing Case-Parent Triad and/or Case-Control Data with SNP Haplotypes
Description:

This package performs genetic association analyses of case-parent triad (trio) data with multiple markers. It can also incorporate complete or incomplete control triads, for instance independent control children. Estimation is based on haplotypes, for instance SNP haplotypes, even though phase is not known from the genetic data. Haplin estimates relative risk (RR + conf.int.) and p-value associated with each haplotype. It uses maximum likelihood estimation to make optimal use of data from triads with missing genotypic data, for instance if some SNPs has not been typed for some individuals. Haplin also allows estimation of effects of maternal haplotypes and parent-of-origin effects, particularly appropriate in perinatal epidemiology. Haplin allows special models, like X-inactivation, to be fitted on the X-chromosome. A GxE analysis allows testing interactions between environment and all estimated genetic effects. The models were originally described in "Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396".

r-qqtest 1.2.0
Channel: guix-cran
Location: guix-cran/packages/q.scm (guix-cran packages q)
Home page: https://github.com/rwoldford/qqtest
Licenses: GPL 3
Synopsis: Self Calibrating Quantile-Quantile Plots for Visual Testing
Description:

This package provides the function qqtest which incorporates uncertainty in its qqplot display(s) so that the user might have a better sense of the evidence against the specified distributional hypothesis. qqtest draws a quantile quantile plot for visually assessing whether the data come from a test distribution that has been defined in one of many ways. The vertical axis plots the data quantiles, the horizontal those of a test distribution. The default behaviour generates 1000 samples from the test distribution and overlays the plot with shaded pointwise interval estimates for the ordered quantiles from the test distribution. A small number of independently generated exemplar quantile plots can also be overlaid. Both the interval estimates and the exemplars provide different comparative information to assess the evidence provided by the qqplot for or against the hypothesis that the data come from the test distribution (default is normal or gaussian). Finally, a visual test of significance (a lineup plot) can also be displayed to test the null hypothesis that the data come from the test distribution.

r-survhe 2.0.3
Propagated dependencies: r-xlsx@0.6.5 r-tidyr@1.3.1 r-tibble@3.2.1 r-rms@6.8-2 r-ggplot2@3.5.1 r-flexsurv@2.3.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/giabaio/survHE
Licenses: GPL 3+
Synopsis: Survival Analysis in Health Economic Evaluation
Description:

This package contains a suite of functions for survival analysis in health economics. These can be used to run survival models under a frequentist (based on maximum likelihood) or a Bayesian approach (both based on Integrated Nested Laplace Approximation or Hamiltonian Monte Carlo). To run the Bayesian models, the user needs to install additional modules (packages), i.e. survHEinla and survHEhmc'. These can be installed using remotes::install_github from their GitHub repositories: (<https://github.com/giabaio/survHEhmc> and <https://github.com/giabaio/survHEinla/> respectively). survHEinla is based on the package INLA, which is available for download at <https://inla.r-inla-download.org/R/stable/>. The user can specify a set of parametric models using a common notation and select the preferred mode of inference. The results can also be post-processed to produce probabilistic sensitivity analysis and can be used to export the output to an Excel file (e.g. for a Markov model, as often done by modellers and practitioners). <doi:10.18637/jss.v095.i14>.

r-mflica 0.1.6
Propagated dependencies: r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/DarkEyes/mFLICA
Licenses: GPL 3
Synopsis: Leadership-Inference Framework for Multivariate Time Series
Description:

This package provides a leadership-inference framework for multivariate time series. The framework for multiple-faction-leadership inference from coordinated activities or mFLICA uses a notion of a leader as an individual who initiates collective patterns that everyone in a group follows. Given a set of time series of individual activities, our goal is to identify periods of coordinated activity, find factions of coordination if more than one exist, as well as identify leaders of each faction. For each time step, the framework infers following relations between individual time series, then identifying a leader of each faction whom many individuals follow but it follows no one. A faction is defined as a group of individuals that everyone follows the same leader. mFLICA reports following relations, leaders of factions, and members of each faction for each time step. Please see Chainarong Amornbunchornvej and Tanya Berger-Wolf (2018) <doi:10.1137/1.9781611975321.62> for methodology and Chainarong Amornbunchornvej (2021) <doi:10.1016/j.softx.2021.100781> for software when referring to this package in publications.

r-ppcseq 1.14.0
Propagated dependencies: r-tidyr@1.3.1 r-tidybayes@3.0.7 r-tibble@3.2.1 r-stanheaders@2.32.10 r-rstantools@2.4.0 r-rstan@2.32.6 r-rlang@1.1.4 r-rcppparallel@5.1.9 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-purrr@1.0.2 r-magrittr@2.0.3 r-lifecycle@1.0.4 r-ggplot2@3.5.1 r-foreach@1.5.2 r-edger@4.4.0 r-dplyr@1.1.4 r-bh@1.84.0-0 r-benchmarkme@1.0.8
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://github.com/stemangiola/ppcseq
Licenses: GPL 3
Synopsis: Probabilistic Outlier Identification for RNA Sequencing Generalized Linear Models
Description:

Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.

r-flowml 0.1.3
Propagated dependencies: r-vip@0.4.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rsample@1.2.1 r-rlang@1.1.4 r-rjson@0.2.23 r-readr@2.1.5 r-r6@2.5.1 r-purrr@1.0.2 r-optparse@1.7.5 r-magrittr@2.0.3 r-future@1.34.0 r-furrr@0.3.1 r-fastshap@0.1.1 r-dplyr@1.1.4 r-data-table@1.16.2 r-caret@6.0-94 r-abcanalysis@1.2.1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/Boehringer-Ingelheim/flowml
Licenses: GPL 3+
Synopsis: Backend for a 'nextflow' Pipeline that Performs Machine-Learning-Based Modeling of Biomedical Data
Description:

This package provides functionality to perform machine-learning-based modeling in a computation pipeline. Its functions contain the basic steps of machine-learning-based knowledge discovery workflows, including model training and optimization, model evaluation, and model testing. To perform these tasks, the package builds heavily on existing machine-learning packages, such as caret <https://github.com/topepo/caret/> and associated packages. The package can train multiple models, optimize model hyperparameters by performing a grid search or a random search, and evaluates model performance by different metrics. Models can be validated either on a test data set, or in case of a small sample size by k-fold cross validation or repeated bootstrapping. It also allows for 0-Hypotheses generation by performing permutation experiments. Additionally, it offers methods of model interpretation and item categorization to identify the most informative features from a high dimensional data space. The functions of this package can easily be integrated into computation pipelines (e.g. nextflow <https://www.nextflow.io/>) and hereby improve scalability, standardization, and re-producibility in the context of machine-learning.

r-openva 1.1.2
Propagated dependencies: r-tariff@1.0.5 r-interva5@1.1.3 r-interva4@1.7.6 r-insilicova@1.4.0 r-ggplot2@3.5.1 r-crayon@1.5.3 r-cli@3.6.3
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://github.com/verbal-autopsy-software/openVA
Licenses: GPL 2
Synopsis: Automated Method for Verbal Autopsy
Description:

This package implements multiple existing open-source algorithms for coding cause of death from verbal autopsies. The methods implemented include InterVA4 by Byass et al (2012) <doi:10.3402/gha.v5i0.19281>, InterVA5 by Byass at al (2019) <doi:10.1186/s12916-019-1333-6>, InSilicoVA by McCormick et al (2016) <doi:10.1080/01621459.2016.1152191>, NBC by Miasnikof et al (2015) <doi:10.1186/s12916-015-0521-2>, and a replication of Tariff method by James et al (2011) <doi:10.1186/1478-7954-9-31> and Serina, et al. (2015) <doi:10.1186/s12916-015-0527-9>. It also provides tools for data manipulation tasks commonly used in Verbal Autopsy analysis and implements easy graphical visualization of individual and population level statistics. The NBC method is implemented by the nbc4va package that can be installed from <https://github.com/rrwen/nbc4va>. Note that this package was not developed by authors affiliated with the Institute for Health Metrics and Evaluation and thus unintentional discrepancies may exist in the implementation of the Tariff method.

r-siminf 9.8.1
Dependencies: gsl@2.8
Propagated dependencies: r-matrix@1.7-1 r-mass@7.3-61 r-digest@0.6.37
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/stewid/SimInf
Licenses: GPL 3
Synopsis: Framework for Data-Driven Stochastic Disease Spread Simulations
Description:

This package provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and OpenMP (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) <doi:10.18637/jss.v091.i12>. The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) <doi:10.1098/rsif.2008.0172>.

r-hornpa 1.1.0
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hornpa
Licenses: GPL 3
Synopsis: Horn's (1965) Test to Determine the Number of Components/Factors
Description:

This package provides a stand-alone function that generates a user specified number of random datasets and computes eigenvalues using the random datasets (i.e., implements Horn's [1965, Psychometrika] parallel analysis <https://link.springer.com/article/10.1007/BF02289447>). Users then compare the resulting eigenvalues (the mean or the specified percentile) from the random datasets (i.e., eigenvalues resulting from noise) to the eigenvalues generated with the user's data. Can be used for both principal components analysis (PCA) and common/exploratory factor analysis (EFA). The output table shows how large eigenvalues can be as a result of merely using randomly generated datasets. If the user's own dataset has actual eigenvalues greater than the corresponding eigenvalues, that lends support to retain that factor/component. In other words, if the i(th) eigenvalue from the actual data was larger than the percentile of the (i)th eigenvalue generated using randomly generated data, empirical support is provided to retain that factor/component. Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 32, 179-185.

r-sailor 1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SailoR
Licenses: GPL 3
Synopsis: An Extension of the Taylor Diagram to Two-Dimensional Vector Data
Description:

This package provides a new diagram for the verification of vector variables (wind, current, etc) generated by multiple models against a set of observations is presented in this package. It has been designed as a generalization of the Taylor diagram to two dimensional quantities. It is based on the analysis of the two-dimensional structure of the mean squared error matrix between model and observations. The matrix is divided into the part corresponding to the relative rotation and the bias of the empirical orthogonal functions of the data. The full set of diagnostics produced by the analysis of the errors between model and observational vector datasets comprises the errors in the means, the analysis of the total variance of both datasets, the rotation matrix corresponding to the principal components in observation and model, the angle of rotation of model-derived empirical orthogonal functions respect to the ones from observations, the standard deviation of model and observations, the root mean squared error between both datasets and the squared two-dimensional correlation coefficient. See the output of function UVError() in this package.

r-coxmos 1.1.2
Propagated dependencies: r-tidyr@1.3.1 r-svglite@2.1.3 r-survminer@0.5.0 r-survival@3.7-0 r-survcomp@1.56.0 r-scattermore@1.2 r-rdpack@2.6.1 r-purrr@1.0.2 r-progress@1.2.3 r-patchwork@1.3.0 r-mixomics@6.30.0 r-mass@7.3-61 r-glmnet@4.1-8 r-ggrepel@0.9.6 r-ggpubr@0.6.0 r-ggplot2@3.5.1 r-future@1.34.0 r-furrr@0.3.1 r-cowplot@1.1.3 r-caret@6.0-94
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/BiostatOmics/Coxmos
Licenses: FSDG-compatible
Synopsis: Cox MultiBlock Survival
Description:

This software package provides Cox survival analysis for high-dimensional and multiblock datasets. It encompasses a suite of functions dedicated from the classical Cox regression to newest analysis, including Cox proportional hazards model, Stepwise Cox regression, and Elastic-Net Cox regression, Sparse Partial Least Squares Cox regression (sPLS-COX) incorporating three distinct strategies, and two Multiblock-PLS Cox regression (MB-sPLS-COX) methods. This tool is designed to adeptly handle high-dimensional data, and provides tools for cross-validation, plot generation, and additional resources for interpreting results. While references are available within the corresponding functions, key literature is mentioned below. Terry M Therneau (2024) <https://CRAN.R-project.org/package=survival>, Noah Simon et al. (2011) <doi:10.18637/jss.v039.i05>, Philippe Bastien et al. (2005) <doi:10.1016/j.csda.2004.02.005>, Philippe Bastien (2008) <doi:10.1016/j.chemolab.2007.09.009>, Philippe Bastien et al. (2014) <doi:10.1093/bioinformatics/btu660>, Kassu Mehari Beyene and Anouar El Ghouch (2020) <doi:10.1002/sim.8671>, Florian Rohart et al. (2017) <doi:10.1371/journal.pcbi.1005752>.

r-hurdlr 0.1
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=hurdlr
Licenses: GPL 2+
Synopsis: Zero-Inflated and Hurdle Modelling Using Bayesian Inference
Description:

When considering count data, it is often the case that many more zero counts than would be expected of some given distribution are observed. It is well established that data such as this can be reliably modelled using zero-inflated or hurdle distributions, both of which may be applied using the functions in this package. Bayesian analysis methods are used to best model problematic count data that cannot be fit to any typical distribution. The package functions are flexible and versatile, and can be applied to varying count distributions, parameter estimation with or without explanatory variable information, and are able to allow for multiple hurdles as it is also not uncommon that count data have an abundance of large-number observations which would be considered outliers of the typical distribution. In lieu of throwing out data or misspecifying the typical distribution, these extreme observations can be applied to a second, extreme distribution. With the given functions of this package, such a two-hurdle model may be easily specified in order to best manage data that is both zero-inflated and over-dispersed.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249