Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Supports the analysis of oceanographic data recorded by Argo autonomous drifting profiling floats. Functions are provided to (a) download and cache data files, (b) subset data in various ways, (c) handle quality-control flags and (d) plot the results according to oceanographic conventions. A shiny app is provided for easy exploration of datasets. The package is designed to work well with the oce package, providing a wide range of processing capabilities that are particular to oceanographic analysis. See Kelley, Harbin, and Richards (2021) <doi:10.3389/fmars.2021.635922> for more on the scientific context and applications.
This package provides a client for AWS Polly <http://aws.amazon.com/documentation/polly>, a speech synthesis service.
This package implements the scenario analysis proposed by Antolin-Diaz, Petrella and Rubio-Ramirez (2021) "Structural scenario analysis with SVARs" <doi:10.1016/j.jmoneco.2020.06.001>.
Implementation of the Artificial Hydrocarbon Networks for data modeling.
This package provides a toolbox to read all R files inside a package and automatically generate @importFrom roxygen2 tags in the right place. Includes a shiny application to review the changes before applying them.
Find an upper bound for the total amount of overstatement of assets in a set of accounts, or estimate the amount of sales tax owed on a collection of transactions (Meeden and Sargent, 2007, <doi:10.1080/03610920701386802>).
Create data that displays generative art when mapped into a ggplot2 plot. Functionality includes specialized data frame creation for geometric shapes, tools that define artistic color palettes, tools for geometrically transforming data, and other miscellaneous tools that are helpful when using ggplot2 for generative art.
This package provides methods for processing corporate balance sheets with a focus on the Brazilian reporting format. Includes data standardization, classification by accounting categories, and aggregation of values. Supports accounting and financial analyses of companies, improving efficiency and ensuring reproducibility of empirical studies.
The functions proposed in this package allows to evaluate the process of measurement of the chemical components of water numerically or graphically. TSSS(), ICHS and datacheck() functions are useful to control the quality of measurements of chemical components of a sample of water. If one or more measurements include an error, the generated graph will indicate it with a position of the point that represents the sample outside the confidence interval. The function CI() allows to evaluate the possibility of contamination of a water sample after being obtained. Validation() is a function that allows to calculate the quality parameters of a technique for the measurement of a chemical component.
This package provides a weekly summary of Hass Avocado sales for the contiguous US from January 2017 through December 20204. See the package website for more information, documentation, and examples. Data source: Haas Avocado Board <https://hassavocadoboard.com/category-data/>.
This package provides WHO Child Growth Standards (z-scores) with confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs. More information on the methods is available online: <https://www.who.int/tools/child-growth-standards>.
Compute an anomaly score for multivariate time series based on the k-nearest neighbors algorithm. Different computations of distances between time series are provided.
The Australian Statistical Geography Standard ('ASGS') is a set of shapefiles by the Australian Bureau of Statistics. This package provides an interface to those shapefiles, as well as methods for converting coordinates to shapefiles.
This package provides functions for Accurate and Speedy linkage map construction, manipulation and diagnosis of Doubled Haploid, Backcross and Recombinant Inbred R/qtl objects. This includes extremely fast linkage map clustering and optimal marker ordering using MSTmap (see Wu et al.,2008).
Visualisation of multidimensional data through different Andrews curves: Andrews, D. F. (1972) Plots of High-Dimensional Data. Biometrics, 28(1), 125-136. <doi:10.2307/2528964>.
This package provides a framework for intuitive, multi-source gene and protein annotation, with a focus on integrating functional genomics with disease and drug data for translational insights. Methods used include g:Profiler (Raudvere et al. (2019) <doi:10.1093/nar/gkz369>), biomaRt (Durinck et al. (2009) <doi:10.1038/nprot.2009.97>), and the Open Targets Platform (Koscielny et al. (2017) <doi:10.1093/nar/gkw1055>).
All animal behaviour occurs sequentially. The package has a number of functions to format sequence data from different sources, to analyse sequential behaviour and communication in animals. It also has functions to plot the data and to calculate the entropy of sequences.
Fit various smoothing spline models. Includes an ssr() function for smoothing spline regression, an nnr() function for nonparametric nonlinear regression, an snr() function for semiparametric nonlinear regression, an slm() function for semiparametric linear mixed-effects models, and an snm() function for semiparametric nonlinear mixed-effects models. See Wang (2011) <doi:10.1201/b10954> for an overview.
Targeted differential and global enrichment analysis of taxonomic rank by shared ASVs (Amplicon Sequence Variant), for high-throughput eDNA sequencing of fungi, bacteria, and metazoan. Actually works in two steps: I) Targeted differential analysis from QIIME2 data and II) Global analysis by Taxon Mann-Whitney U test analysis from targeted analysis (I) (I) Estimate variance-mean dependence in count/abundance ASVs data from high-throughput sequencing assays and test for differential represented ASVs based on a model using the negative binomial distribution. (II) NCBITaxon_MWU uses continuous measure of significance (such as fold-change or -log(p-value)) to identify NCBITaxon that are significantly enriches with either up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typical NCBITaxon enrichment analysis based Fisher's exact test: it will show NCBITaxon over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are used to indicate significance and color indicates enrichment with either up (red) or down (blue) regulated ASVs. No colors are shown for binary measure analysis. The tree on the plot is hierarchical clustering of NCBITaxon based on shared ASVs. Categories with no branch length between them are subsets of each other. The fraction next to the category name indicates the fraction of good ASVs in it; good ASVs are the ones exceeding the arbitrary absValue cutoff (option in taxon_mwuPlot()). For Fisher's based test, specify absValue=0.5. This value does not affect statistics and is used for plotting only. The original idea was for genes differential expression analysis from Wright et al (2015) <doi:10.1186/s12864-015-1540-2>; adapted here for taxonomic analysis. The Anaconda package makes it possible to carry out these analyses by automatically creating several graphs and tables and storing them in specially created subfolders. You will need your QIIME2 pipeline output for each kingdom (eg; Fungi and/or Bacteria and/or Metazoan): i) taxonomy.tsv, ii) taxonomy_RepSeq.tsv, iii) ASV.tsv and iv) SampleSheet_comparison.txt (the latter being created by you).
An implementation of ADPclust clustering procedures (Fast Clustering Using Adaptive Density Peak Detection). The work is built and improved upon the idea of Rodriguez and Laio (2014)<DOI:10.1126/science.1242072>. ADPclust clusters data by finding density peaks in a density-distance plot generated from local multivariate Gaussian density estimation. It includes an automatic centroids selection and parameter optimization algorithm, which finds the number of clusters and cluster centroids by comparing average silhouettes on a grid of testing clustering results; It also includes a user interactive algorithm that allows the user to manually selects cluster centroids from a two dimensional "density-distance plot". Here is the research article associated with this package: "Wang, Xiao-Feng, and Yifan Xu (2015)<DOI:10.1177/0962280215609948> Fast clustering using adaptive density peak detection." Statistical methods in medical research". url: http://smm.sagepub.com/content/early/2015/10/15/0962280215609948.abstract.
This package provides an interface in R to cell atlas approximations. See the vignette under "Getting started" for instructions. You can also explore the reference documentation for specific functions. Additional interfaces and resources are available at <https://atlasapprox.readthedocs.io>.
Estimate age-depth models from stratigraphic and sedimentological data, and transform data between the time and stratigraphic domain.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
Computing and visualizing comparative asymptotic timings of different algorithms and code versions. Also includes functionality for comparing empirical timings with expected references such as linear or quadratic, <https://en.wikipedia.org/wiki/Asymptotic_computational_complexity> Also includes functionality for measuring asymptotic memory and other quantities.