Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Collection of procedures to perform Bayesian analysis on a variety of factor models. Currently, it includes: "Bayesian Exploratory Factor Analysis" (befa) from G. Conti, S. Frühwirth-Schnatter, J.J. Heckman, R. Piatek (2014) <doi:10.1016/j.jeconom.2014.06.008>, an approach to dedicated factor analysis with stochastic search on the structure of the factor loading matrix. The number of latent factors, as well as the allocation of the manifest variables to the factors, are not fixed a priori but determined during MCMC sampling.
This package provides a computational tool to describe patterns in black and white images from natural structures. bwimage implemented functions for exceptionally broad subject. For instance, bwimage provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.
The BAGofT assesses the goodness-of-fit of binary classifiers. Details can be found in Zhang, Ding and Yang (2021) <arXiv:1911.03063v2>.
Extract data from Birdscan MR1 SQL vertical-looking radar databases, filter, and process them to Migration Traffic Rates (#objects per hour and km) or density (#objects per km3) of, for example birds, and insects. Object classifications in the Birdscan MR1 databases are based on the dataset of Haest et al. (2021) <doi:10.5281/zenodo.5734960>). Migration Traffic Rates and densities can be calculated separately for different height bins (with a height resolution of choice) as well as over time periods of choice (e.g., 1/2 hour, 1 hour, 1 day, day/night, the full time period of observation, and anything in between). Two plotting functions are also included to explore the data in the SQL databases and the resulting Migration Traffic Rate results. For details on the Migration Traffic Rate calculation procedures, see Schmid et al. (2019) <doi:10.1111/ecog.04025>.
An implementation of a collection of tools for exact Bayesian inference with discrete times series. This package contains functions that can be used for prediction, model selection, estimation, segmentation/change-point detection and other statistical tasks. Specifically, the functions provided can be used for the exact computation of the prior predictive likelihood of the data, for the identification of the a posteriori most likely (MAP) variable-memory Markov models, for calculating the exact posterior probabilities and the AIC and BIC scores of these models, for prediction with respect to log-loss and 0-1 loss and segmentation/change-point detection. Example data sets from finance, genetics, animal communication and meteorology are also provided. Detailed descriptions of the underlying theory and algorithms can be found in [Kontoyiannis et al. Bayesian Context Trees: Modelling and exact inference for discrete time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology), April 2022. Available at: <arXiv:2007.14900> [stat.ME], July 2020] and [Lungu et al. Change-point Detection and Segmentation of Discrete Data using Bayesian Context Trees <arXiv:2203.04341> [stat.ME], March 2022].
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for proportional hazards models with piecewise constant hazard. The methodology and examples of applying the package are detailed in <doi:10.48550/arXiv.2404.05118>. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The proportional hazards model with piecewise constant hazard is detailed in Ibrahim et al. (2001) <doi:10.1007/978-1-4757-3447-8>.
The Philippines frequently experiences tropical cyclones (called bagyo in the Filipino language) because of its geographical position. These cyclones typically bring heavy rainfall, leading to widespread flooding, as well as strong winds that cause significant damage to human life, crops, and property. Data on cyclones are collected and curated by the Philippine Atmospheric, Geophysical, and Astronomical Services Administration or PAGASA and made available through its website <https://bagong.pagasa.dost.gov.ph/tropical-cyclone/publications/annual-report>. This package contains Philippine tropical cyclones data in a machine-readable format. It is hoped that this data package provides an interesting and unique dataset for data exploration and visualisation.
MCMC algorithms & processing functions for: 1. single response multiple regression, see Papageorgiou, G. (2018) <doi: 10.32614/RJ-2018-069>, 2. multivariate response multiple regression, with nonparametric models for the means, the variances and the correlation matrix, with variable selection, see Papageorgiou, G. and Marshall, B. C. (2020) <doi: 10.1080/10618600.2020.1739534>, 3. joint mean-covariance models for multivariate responses, see Papageorgiou, G. (2022) <doi: 10.1002/sim.9376>, and 4.Dirichlet process mixtures, see Papageorgiou, G. (2019) <doi: 10.1111/anzs.12273>.
Bayesian seemingly unrelated regression with general variable selection and dense/sparse covariance matrix. The sparse seemingly unrelated regression is described in Bottolo et al. (2021) <doi:10.1111/rssc.12490>, the software paper is in Zhao et al. (2021) <doi:10.18637/jss.v100.i11>, and the model with random effects is described in Zhao et al. (2024) <doi:10.1093/jrsssc/qlad102>.
Companion package, functions, data sets, examples for the book Patrice Bertail and Anna Dudek (2025), Bootstrap for Dependent Data, with an R package (by Bernard Desgraupes and Karolina Marek) - submitted. Kreiss, J.-P. and Paparoditis, E. (2003) <doi:10.1214/aos/1074290332> Politis, D.N., and White, H. (2004) <doi:10.1081/ETC-120028836> Patton, A., Politis, D.N., and White, H. (2009) <doi:10.1080/07474930802459016> Tsybakov, A. B. (2018) <doi:10.1007/b13794> Bickel, P., and Sakov, A. (2008) <doi:10.1214/18-AOS1803> Götze, F. and RaÄ kauskas, A. (2001) <doi:10.1214/lnms/1215090074> Politis, D. N., Romano, J. P., & Wolf, M. (1999, ISBN:978-0-387-98854-2) Carlstein E. (1986) <doi:10.1214/aos/1176350057> Künsch, H. (1989) <doi:10.1214/aos/1176347265> Liu, R. and Singh, K. (1992) <https://www.stat.purdue.edu/docs/research/tech-reports/1991/tr91-07.pdf> Politis, D.N. and Romano, J.P. (1994) <doi:10.1080/01621459.1994.10476870> Politis, D.N. and Romano, J.P. (1992) <https://www.stat.purdue.edu/docs/research/tech-reports/1991/tr91-07.pdf> Patrice Bertail, Anna E. Dudek. (2022) <doi:10.3150/23-BEJ1683> Dudek, A.E., LeÅ kow, J., Paparoditis, E. and Politis, D. (2014a) <https://ideas.repec.org/a/bla/jtsera/v35y2014i2p89-114.html> Beran, R. (1997) <doi:10.1023/A:1003114420352> B. Efron, and Tibshirani, R. (1993, ISBN:9780429246593) Bickel, P. J., Götze, F. and van Zwet, W. R. (1997) <doi:10.1007/978-1-4614-1314-1_17> A. C. Davison, D. Hinkley (1997) <doi:10.2307/1271471> Falk, M., & Reiss, R. D. (1989) <doi:10.1007/BF00354758> Lahiri, S. N. (2003) <doi:10.1007/978-1-4757-3803-2> Shimizu, K. .(2017) <doi:10.1007/978-3-8348-9778-7> Park, J.Y. (2003) <doi:10.1111/1468-0262.00471> Kirch, C. and Politis, D. N. (2011) <doi:10.48550/arXiv.1211.4732> Bertail, P. and Dudek, A.E. (2024) <doi:10.3150/23-BEJ1683> Dudek, A. E. (2015) <doi:10.1007/s00184-014-0505-9> Dudek, A. E. (2018) <doi:10.1080/10485252.2017.1404060> Bertail, P., Clémençon, S. (2006a) <https://ideas.repec.org/p/crs/wpaper/2004-47.html> Bertail, P. and Clémençon, S. (2006, ISBN:978-0-387-36062-1) RaduloviÄ , D. (2006) <doi:10.1007/BF02603005> Bertail, P. Politis, D. N. Rhomari, N. (2000) <doi:10.1080/02331880008802701> Nordman, D.J. Lahiri, S.N.(2004) <doi:10.1214/009053604000000779> Politis, D.N. Romano, J.P. (1993) <doi:10.1006/jmva.1993.1085> Hurvich, C. M. and Zeger, S. L. (1987, ISBN:978-1-4612-0099-4) Bertail, P. and Dudek, A. (2021) <doi:10.1214/20-EJS1787> Bertail, P., Clémençon, S. and Tressou, J. (2015) <doi:10.1111/jtsa.12105> Asmussen, S. (1987) <doi:10.1007/978-3-662-11657-9> Efron, B. (1979) <doi:10.1214/aos/1176344552> Gray, H., Schucany, W. and Watkins, T. (1972) <doi:10.2307/2335521> Quenouille, M.H. (1949) <doi:10.1111/j.2517-6161.1949.tb00023.x> Quenouille, M. H. (1956) <doi:10.2307/2332914> Prakasa Rao, B. L. S. and Kulperger, R. J. (1989) <https://www.jstor.org/stable/25050735> Rajarshi, M.B. (1990) <doi:10.1007/BF00050835> Dudek, A.E. Maiz, S. and Elbadaoui, M. (2014) <doi:10.1016/j.sigpro.2014.04.022> Beran R. (1986) <doi:10.1214/aos/1176349847> Maritz, J. S. and Jarrett, R. G. (1978) <doi:10.2307/2286545> Bertail, P., Politis, D., Romano, J. (1999) <doi:10.2307/2670177> Bertail, P. and Clémençon, S. (2006b) <doi:10.1007/0-387-36062-X_1> RaduloviÄ , D. (2004) <doi:10.1007/BF02603005> Hurd, H.L., Miamee, A.G. (2007) <doi:10.1002/9780470182833> Bühlmann, P. (1997) <doi:10.2307/3318584> Choi, E., Hall, P. (2000) <doi:10.1111/1467-9868.00244> Efron, B., Tibshirani, R. (1993, ISBN:9780429246593) Bertail, P., Clémençon, S. and Tressou, J. (2009) <doi:10.1007/s10687-009-0081-y> Bertail, P., Medina-Garay, A., De Lima-Medina, F. and Jales, I. (2024) <doi:10.1080/02331888.2024.2344670>.
This package provides a tuneable and interpretable method for relaxing the instrumental variables (IV) assumptions to infer treatment effects in the presence of unobserved confounding. For a treatment-associated covariate to be a valid IV, it must be (a) unconfounded with the outcome and (b) have a causal effect on the outcome that is exclusively mediated by the exposure. There is no general test of the validity of these IV assumptions for any particular pre-treatment covariate. However, if different pre-treatment covariates give differing causal effect estimates when treated as IVs, then we know at least some of the covariates violate these assumptions. budgetIVr exploits this fact by taking as input a minimum budget of pre-treatment covariates assumed to be valid IVs and idenfiying the set of causal effects that are consistent with the user's data and budget assumption. The following generalizations of this principle can be used in this package: (1) a vector of multiple budgets can be assigned alongside corresponding thresholds that model degrees of IV invalidity; (2) budgets and thresholds can be chosen using specialist knowledge or varied in a principled sensitivity analysis; (3) treatment effects can be nonlinear and/or depend on multiple exposures (at a computational cost). The methods in this package require only summary statistics. Confidence sets are constructed under the "no measurement error" (NOME) assumption from the Mendelian randomization literature. For further methodological details, please refer to Penn et al. (2024) <doi:10.48550/arXiv.2411.06913>.
This package provides a fully Bayesian approach in order to estimate a general family of cure rate models under the presence of covariates, see Papastamoulis and Milienos (2024) <doi:10.1007/s11749-024-00942-w> and Papastamoulis and Milienos (2024b) <doi:10.48550/arXiv.2409.10221>. The promotion time can be modelled (a) parametrically using typical distributional assumptions for time to event data (including the Weibull, Exponential, Gompertz, log-Logistic distributions), or (b) semiparametrically using finite mixtures of distributions. In both cases, user-defined families of distributions are allowed under some specific requirements. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis-Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution.
Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
Implementation of No-Effect-Concentration estimation that uses brms (see Burkner (2017)<doi:10.18637/jss.v080.i01>; Burkner (2018)<doi:10.32614/RJ-2018-017>; Carpenter et al. (2017)<doi:10.18637/jss.v076.i01> to fit concentration(dose)-response data using Bayesian methods for the purpose of estimating ECx values, but more particularly NEC (see Fox (2010)<doi:10.1016/j.ecoenv.2009.09.012>), NSEC (see Fisher and Fox (2023)<doi:10.1002/etc.5610>), and N(S)EC (see Fisher et al. 2023<doi:10.1002/ieam.4809>). A full description of this package can be found in Fisher et al. (2024)<doi:10.18637/jss.v110.i05>. This package expands and supersedes an original version implemented in R2jags (see Su and Yajima (2020)<https://CRAN.R-project.org/package=R2jags>; Fisher et al. (2020)<doi:10.5281/ZENODO.3966864>).
This package provides a fast and intuitive batch effect removal tool for single-cell data. BBKNN is originally used in the scanpy python package, and now can be used with Seurat seamlessly.
This package provides methods for examining posterior MCMC samples from a single chain using trace plots and density plots, and from multiple chains by comparing posterior medians and credible intervals from each chain. These plotting functions have a variety of options, such as figure sizes, legends, parameters to plot, and saving plots to file. Functions interface with the NIMBLE software package, see de Valpine, Turek, Paciorek, Anderson-Bergman, Temple Lang and Bodik (2017) <doi:10.1080/10618600.2016.1172487>.
Estimates survival and mortality with covariates from census or capture-recapture/recovery data in a Bayesian framework when many individuals are of unknown age. It includes tools for data checking, model diagnostics and outputs such as life-tables and plots, as described in Colchero, Jones, and Rebke (2012) <doi:10.1111/j.2041-210X.2012.00186.x> and Colchero et al. (2021) <doi:10.1038/s41467-021-23894-3>.
This package provides a collection of LaTeX styles using Beamer customization for pdf-based presentation slides in RMarkdown'. At present it contains RMarkdown adaptations of the LaTeX themes Metropolis (formerly mtheme') theme by Matthias Vogelgesang and others (now included in TeXLive'), the IQSS by Ista Zahn (which is included here), and the Monash theme by Rob J Hyndman. Additional (free) fonts may be needed: Metropolis prefers Fira', and IQSS requires Libertinus'.
Finds the largest possible regression model that will still converge for various types of regression analyses (including mixed models and generalized additive models) and then optionally performs stepwise elimination similar to the forward and backward effect-selection methods in SAS, based on the change in log-likelihood or its significance, Akaike's Information Criterion, the Bayesian Information Criterion, the explained deviance, or the F-test of the change in R².
Combine diverse evidence across multiple studies to test a high level scientific theory. The methods can also be used as an alternative to a standard meta-analysis.
This package provides a collection of R functions were implemented from published and available analytic solutions for the One-Dimensional Boussinesq Equation (ground-water). In particular, the function "beq.lin()" is the analytic solution of the linearized form of Boussinesq Equation between two different head-based boundary (Dirichlet) conditions; "beq.song" is the non-linear power-series analytic solution of the motion of a wetting front over a dry bedrock (Song at al, 2007, see complete reference on function documentation). Bugs/comments/questions/collaboration of any kind are warmly welcomed.
Standard template library containers are used to implement an efficient binary segmentation algorithm, which is log-linear on average and quadratic in the worst case.
Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2021) <doi:10.18637/jss.v100.i04>.
This package implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.