Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates VAR and VARX models with Structured Penalties.
This package provides a selection of distances measures for bioinformatics data. Other important distance measures for bioinformatics data are selected from the R package parallelDist'. A special distance measure for the Gene Ontology is available.
This package provides a Bayesian version of the analysis of variance based on a three-component Gaussian mixture for which a Gibbs sampler produces posterior draws. For details about the Bayesian ANOVA based on Gaussian mixtures, see Kelter (2019) <arXiv:1906.07524>.
Render SVG as interactive figures to display contextual information, with selectable and clickable user interface elements. These figures can be seamlessly integrated into rmarkdown and Quarto documents, as well as shiny applications, allowing manipulation of elements and reporting actions performed on them. Additional features include pan, zoom in/out functionality, and the ability to export the figures in SVG or PNG formats.
An R interface to the Stark-Parker implementation of an algorithm for bounded-variable least squares.
Easily launch, track, and control functions as background-parallel jobs. Includes robust utilities for job status, error handling, resource monitoring, and result collection. Designed for scalable workflows in interactive and automated settings (local or remote). Integrates with multiple backends; supports flexible automation pipelines and live job tracking. For more information, see <https://anirbanshaw24.github.io/bakerrr/>.
The Biomarker Optimal Segmentation System R package, bossR', is designed for precision medicine, helping to identify individual traits using biomarkers. It focuses on determining the most effective cutoff value for a continuous biomarker, which is crucial for categorizing patients into two groups with distinctly different clinical outcomes. The package simultaneously finds the optimal cutoff from given candidate values and tests its significance. Simulation studies demonstrate that bossR offers statistical power and false positive control non-inferior to the permutation approach (considered the gold standard in this field), while being hundreds of times faster.
Various supervised and unsupervised binning tools including using entropy, recursive partition methods and clustering.
The main purpose of this package is to propose a transparent methodological framework to compare bioregionalization methods based on hierarchical and non-hierarchical clustering algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network algorithms (Lenormand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).
This package provides tools for 3D imaging, mostly for biology/microscopy. Read and write TIFF stacks. Functions for segmentation, filtering and analyzing 3D point patterns.
This package performs brace expansions on strings. Made popular by Unix shells, brace expansion allows users to concisely generate certain character vectors by taking a single string and (recursively) expanding the comma-separated lists and double-period-separated integer and character sequences enclosed within braces in that string. The double-period-separated numeric integer expansion also supports padding the resulting numbers with zeros.
The card game War is simple in its rules but can be lengthy. In another domain, the nonparametric bootstrap test with pooled resampling (nbpr) methods, as outlined in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, is optimal for comparing paired or unpaired means in non-normal data, especially for small sample size studies. However, many researchers are unfamiliar with these methods. The bootwar package bridges this gap by enabling users to grasp the concepts of nbpr via Boot War, a variation of the card game War designed for small samples. The package provides functions like score_keeper() and play_round() to streamline gameplay and scoring. Once a predetermined number of rounds concludes, users can employ the analyze_game() function to derive game results. This function leverages the npboottprm package's nonparboot() to report nbpr results and, for comparative analysis, also reports results from the stats package's t.test() function. Additionally, bootwar features an interactive shiny web application, bootwar(). This offers a user-centric interface to experience Boot War, enhancing understanding of nbpr methods across various distributions, sample sizes, number of bootstrap resamples, and confidence intervals.
BayesX performs Bayesian inference in structured additive regression (STAR) models. The R package BayesXsrc provides the BayesX command line tool for easy installation. A convenient R interface is provided in package R2BayesX.
This package provides a tool to perform all different statistical tests and calculations needed by Biological dosimetry Laboratories. Detailed documentation is available in <https://biodosetools-team.github.io/documentation/>.
Perform record linkage on streaming files using recursive Bayesian updating.
Bayesian Model Averaging for linear models with a wide choice of (customizable) priors. Built-in priors include coefficient priors (fixed, hyper-g and empirical priors), 5 kinds of model priors, moreover model sampling by enumeration or various MCMC approaches. Post-processing functions allow for inferring posterior inclusion and model probabilities, various moments, coefficient and predictive densities. Plotting functions available for posterior model size, MCMC convergence, predictive and coefficient densities, best models representation, BMA comparison. Also includes Bayesian normal-conjugate linear model with Zellner's g prior, and assorted methods.
Handy frameworks, such as error handling and log generation, for batch scripts. Use case: in scripts running in remote servers, set error handling mechanism for downloading and uploading and record operation log.
Approximates best-subset selection (L0) regression with an iteratively adaptive Ridge (L2) penalty for large-scale models. This package uses Cyclops for an efficient implementation and the iterative method is described in Kawaguchi et al (2020) <doi:10.1002/sim.8438> and Li et al (2021) <doi:10.1016/j.jspi.2020.12.001>.
Prognostic Enrichment is a strategy of enriching a clinical trial for testing an intervention intended to prevent or delay an unwanted clinical event. A prognostically enriched trial enrolls only patients who are more likely to experience the unwanted clinical event than the broader patient population (R. Temple (2010) <doi:10.1038/clpt.2010.233>). By testing the intervention in an enriched study population, the trial may be adequately powered with a smaller sample size, which can have both practical and ethical advantages. This package provides tools to evaluate biomarkers for prognostic enrichment of clinical trials with survival/time-to-event outcomes.
Comprehensive Business Process Analysis toolkit. Creates S3-class for event log objects, and related handler functions. Imports related packages for filtering event data, computation of descriptive statistics, handling of Petri Net objects and visualization of process maps. See also packages edeaR','processmapR', eventdataR and processmonitR'.
R functions for "The Basics of Item Response Theory Using R" by Frank B. Baker and Seock-Ho Kim (Springer, 2017, ISBN-13: 978-3-319-54204-1) including iccplot(), icccal(), icc(), iccfit(), groupinv(), tcc(), ability(), tif(), and rasch(). For example, iccplot() plots an item characteristic curve under the two-parameter logistic model.
This package provides a set of R functions and data sets for the book "Understanding Computational Bayesian Statistics." This book was written by Bill (WM) Bolstad and published in 2009 by John Wiley & Sons (ISBN 978-0470046098).
Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
This package provides methods for model selection, model averaging, and calculating metrics, such as the Gini, Theil, Mean Log Deviation, etc, on binned income data where the topmost bin is right-censored. We provide both a non-parametric method, termed the bounded midpoint estimator (BME), which assigns cases to their bin midpoints; except for the censored bins, where cases are assigned to an income estimated by fitting a Pareto distribution. Because the usual Pareto estimate can be inaccurate or undefined, especially in small samples, we implement a bounded Pareto estimate that yields much better results. We also provide a parametric approach, which fits distributions from the generalized beta (GB) family. Because some GB distributions can have poor fit or undefined estimates, we fit 10 GB-family distributions and use multimodel inference to obtain definite estimates from the best-fitting distributions. We also provide binned income data from all United States of America school districts, counties, and states.