Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Supports import/export for a number of datetime string standards and R datetime classes often including lossless re-export of any original reduced precision including ISO 8601 <https://en.wikipedia.org/wiki/ISO_8601> and pdfmark <https://opensource.adobe.com/dc-acrobat-sdk-docs/library/pdfmark/> datetime strings. Supports local/global datetimes with optional UTC offsets and/or (possibly heterogeneous) time zones with up to nanosecond precision.
This package provides extra functions to manipulate dendrograms that build on the base functions provided by the stats package. The main functionality it is designed to add is the ability to colour all the edges in an object of class dendrogram according to cluster membership i.e. each subtree is coloured, not just the terminal leaves. In addition it provides some utility functions to cut dendrogram and hclust objects and to set/get labels.
Several tools for handling block-matrix diagonals and similar constructs are implemented. Block-diagonal matrices can be extracted or removed using two small functions implemented here. In addition, non-square matrices are supported. Block diagonal matrices occur when two dimensions of a data set are combined along one edge of a matrix. For example, trade-flow data in the decompr and gvc packages have each country-industry combination occur along both edges of the matrix.
This package implements methods for calculating disproportionate impact: the percentage point gap, proportionality index, and the 80% index. California Community Colleges Chancellor's Office (2017). Percentage Point Gap Method. <https://www.cccco.edu/-/media/CCCCO-Website/About-Us/Divisions/Digital-Innovation-and-Infrastructure/Research/Files/PercentagePointGapMethod2017.ashx>. California Community Colleges Chancellor's Office (2014). Guidelines for Measuring Disproportionate Impact in Equity Plans. <https://www.cccco.edu/-/media/CCCCO-Website/Files/DII/guidelines-for-measuring-disproportionate-impact-in-equity-plans-tfa-ada.pdf>.
An implementation of Dcifer (Distance for complex infections: fast estimation of relatedness), an identity by descent (IBD) based method to calculate genetic relatedness between polyclonal infections from biallelic and multiallelic data. The package includes functions that format and preprocess the data, implement the method, and visualize the results. Gerlovina et al. (2022) <doi:10.1093/genetics/iyac126>.
This package provides a suite of loon related packages providing data analytic tools for Direct Interactive Visual Exploration in R ('diveR'). These tools work with and complement those of the tidyverse suite, extending the grammar of ggplot2 to become a grammar of interactive graphics. The suite provides many visual tools designed for moderately (100s of variables) high dimensional data analysis, through zenplots and novel tools in loon', and extends the ggplot2 grammar to provide parallel coordinates, Andrews plots, and arbitrary glyphs through ggmulti'. The diveR package gathers together and installs all these related packages in a single step.
Data cleaning scripts typically contain a lot of if this change that type of statements. Such statements are typically condensed expert knowledge. With this package, such data modifying rules are taken out of the code and become in stead parameters to the work flow. This allows one to maintain, document, and reason about data modification rules as separate entities.
This package provides tools for constructing, manipulating and using distance metrics.
This package implements fast Monte Carlo simulations for goodness-of-fit (GOF) tests for discrete distributions. This includes tests based on the Chi-squared statistic, the log-likelihood-ratio (G^2) statistic, the Freeman-Tukey (Hellinger-distance) statistic, the Kolmogorov-Smirnov statistic, the Cramer-von Mises statistic as described in Choulakian, Lockhart and Stephens (1994) <doi:10.2307/3315828>, and the root-mean-square statistic, see Perkins, Tygert, and Ward (2011) <doi:10.1016/j.amc.2011.03.124>.
Motifs within biological sequences show a significant role. This package utilizes a user-defined threshold value (window size and similarity) to create consensus segments or motifs through local alignment of dynamic programming with gap and it calculates the frequency of each identified motif, offering a detailed view of their prevalence within the dataset. It allows for thorough exploration and understanding of sequence patterns and their biological importance.
Works as an "add-on" to packages like shiny', future', as well as rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, dipsaus for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize shiny inputs without freezing the app, or how to get memory size on Linux or MacOS system. The enhancements roughly fall into these four categories: 1. shiny input widgets; 2. high-performance computing using the future package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
The gap statistic approach is extended to estimate the number of clusters for categorical response format data. This approach and accompanying software is designed to be used with the output of any clustering algorithm and with distances specifically designed for categorical (i.e. multiple choice) or ordinal survey response data.
This package provides a versatile toolkit for analyzing and visualizing DEXi (Decision EXpert for education) decision trees, facilitating multi-criteria decision analysis directly within R. Users can read .dxi files, manipulate decision trees, and evaluate various scenarios. It supports sensitivity analysis through Monte Carlo simulations, one-at-a-time approaches, and variance-based methods, helping to discern the impact of input variations. Additionally, it includes functionalities for generating sampling plans and an array of visualization options for decision trees and analysis results. A distinctive feature is the synoptic table plot, aiding in the efficient comparison of scenarios. Whether for in-depth decision modeling or sensitivity analysis, this package stands as a comprehensive solution. Definition of sensitivity analyses available in Carpani, Bergez and Monod (2012) <doi:10.1016/j.envsoft.2011.10.002> and detailed description of the package soon available in Alaphilippe et al. (2025) <doi:10.1016/j.simpa.2024.100729>.
This package provides friendly wrappers for creating duckdb'-backed connections to tabular datasets ('csv', parquet, etc) on local or remote file systems. This mimics the behaviour of "open_dataset" in the arrow package, but in addition to S3 file system also generalizes to any list of http URLs.
This package provides functions for direct surrogate variable analysis, which can identify hidden factors in high-dimensional biomedical data.
Allows humanitarian community, academia, media, government, and non-governmental organizations to utilize the data collected by the Displacement Tracking Matrix (<https://dtm.iom.int>), a unit in the International Organization for Migration. This also provides non-sensitive Internally Displaced Person figures, aggregated at the country, Admin 1 (states, provinces, or equivalent), and Admin 2 (smaller administrative areas) levels.
This package provides functions to compute coefficients measuring the dependence of two or more than two variables. The functions can be deployed to gain information about functional dependencies of the variables with emphasis on monotone functions. The statistics describe how well one response variable can be approximated by a monotone function of other variables. In regression analysis the variable selection is an important issue. In this framework the functions could be useful tools in modeling the regression function. Detailed explanations on the subject can be found in papers Liebscher (2014) <doi:10.2478/demo-2014-0004>; Liebscher (2017) <doi:10.1515/demo-2017-0012>; Liebscher (2019, submitted).
Allows to simulate SNP data using genlight objects. For example, it is straight forward to simulate a simple drift scenario with exchange of individuals between two populations or create a new genlight object based on allele frequencies of an existing genlight object.
This package provides tools to create and manipulate probability distributions using S3. Generics pdf(), cdf(), quantile(), and random() provide replacements for base R's d/p/q/r style functions. Functions and arguments have been named carefully to minimize confusion for students in intro stats courses. The documentation for each distribution contains detailed mathematical notes.
Tutarials of R learning easily and happily.
This package provides a direct approach to optimal designs for copula models based on the Fisher information. Provides flexible functions for building joint PDFs, evaluating the Fisher information and finding optimal designs. It includes an extensible solution to summation and integration called nint', functions for transforming, plotting and comparing designs, as well as a set of tools for common low-level tasks.
Have you ever been tempted to create roxygen2'-style documentation comments for one of your functions that was not part of one of your packages (yet)? This is exactly what this package is about: running roxygen2 on (chunks of) a single code file.
This package performs Diffusion Non-Additive (DNA) model proposed by Heo, Boutelet, and Sung (2025+) <doi:10.48550/arXiv.2506.08328> for multi-fidelity computer experiments with tuning parameters. The DNA model captures nonlinear dependencies across fidelity levels using Gaussian process priors and is particularly effective when simulations at different fidelity levels are nonlinearly correlated. The DNA model targets not only interpolation across given fidelity levels but also extrapolation to smaller tuning parameters including the exact solution corresponding to a zero-valued tuning parameter, leveraging a nonseparable covariance kernel structure that models interactions between the tuning parameter and input variables. Closed-form expressions for the predictive mean and variance enable efficient inference and uncertainty quantification. Hyperparameters in the model are estimated via maximum likelihood estimation.
This package provides functions for inferring longitudinal dominance hierarchies, which describe dominance relationships and their dynamics in a single latent hierarchy over time. Strauss & Holekamp (in press).