Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The reliability of clusters is estimated using random projections. A set of stability measures is provided to assess the reliability of the clusters discovered by a generic clustering algorithm. The stability measures are taylored to high dimensional data (e.g. DNA microarray data) (Valentini, G (2005), <doi:10.1093/bioinformatics/bti817>.
Simplifying the creation of print-ready maps, this package offers a user-friendly interface derived from ggplot2 for handling OpenStreetMap data. It streamlines the map-making process, allowing users to focus on the story their maps tell. Transforming raw geospatial data into informative visualizations is made easy with simple features sf geometries. Whether for urban planning, environmental studies, or impactful public presentations, this tool facilitates straightforward and effective map creation. Enhance the dissemination of spatial information with high-quality, narrative-driven visualizations!
To improve estimation accuracy and stability in statistical modeling, catalytic prior distributions are employed, integrating observed data with synthetic data generated from a simpler model's predictive distribution. This approach enhances model robustness, stability, and flexibility in complex data scenarios. The catalytic prior distributions are introduced by Huang et al. (2020, <doi:10.1073/pnas.1920913117>), Li and Huang (2023, <doi:10.48550/arXiv.2312.01411>).
This package provides functions to analyze coarse data. Specifically, it contains functions to (1) fit parametric accelerated failure time models to interval-censored survival time data, and (2) estimate the case-fatality ratio in scenarios with under-reporting. This package's development was motivated by applications to infectious disease: in particular, problems with estimating the incubation period and the case fatality ratio of a given disease. Sample data files are included in the package. See Reich et al. (2009) <doi:10.1002/sim.3659>, Reich et al. (2012) <doi:10.1111/j.1541-0420.2011.01709.x>, and Lessler et al. (2009) <doi:10.1016/S1473-3099(09)70069-6>.
Unified interface for the estimation of causal networks, including the methods backShift (from package backShift'), bivariateANM (bivariate additive noise model), bivariateCAM (bivariate causal additive model), CAM (causal additive model) (from package CAM'; the package is temporarily unavailable on the CRAN repository; formerly available versions can be obtained from the archive), hiddenICP (invariant causal prediction with hidden variables), ICP (invariant causal prediction) (from package InvariantCausalPrediction'), GES (greedy equivalence search), GIES (greedy interventional equivalence search), LINGAM', PC (PC Algorithm), FCI (fast causal inference), RFCI (really fast causal inference) (all from package pcalg') and regression.
While data from randomized experiments remain the gold standard for causal inference, estimation of causal estimands from observational data is possible through various confounding adjustment methods. However, the challenge of unmeasured confounding remains a concern in causal inference, where failure to account for unmeasured confounders can lead to biased estimates of causal estimands. Sensitivity analysis within the framework of causal inference can help adjust for possible unmeasured confounding. In `causens`, three main methods are implemented: adjustment via sensitivity functions (Brumback, Hernán, Haneuse, and Robins (2004) <doi:10.1002/sim.1657> and Li, Shen, Wu, and Li (2011) <doi:10.1093/aje/kwr096>), Bayesian parametric modelling and Monte Carlo approaches (McCandless, Lawrence C and Gustafson, Paul (2017) <doi:10.1002/sim.7298>).
An educational package providing intuitive functions for calculating confidence intervals (CI) for various statistical parameters. Designed primarily for teaching and learning about statistical inference (particularly confidence intervals). Offers user-friendly wrappers around established methods for proportions, means, and bootstrap-based intervals. Integrates seamlessly with Tidyverse workflows, making it ideal for classroom demonstrations and student exercises.
The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Uses the CMS application programming interface <https://dnav.cms.gov/api/healthdata> to provide users databases containing yearly Medicare reimbursement rates in the United States. Data can be acquired for the entire United States or only for specific localities. Currently, support is only provided for the Medicare Physician Fee Schedule, but support will be expanded for other CMS databases in future versions.
Allows inferring gene regulatory networks with direct physical interactions from microarray expression data using C3NET.
This package provides a genome-wide survival framework that integrates sequential conditional independent tuples and saddlepoint approximation method, to provide SNP-level false discovery rate control while improving power, particularly for biobank-scale survival analyses with low event rates. The method is based on model-X knockoffs as described in Barber and Candes (2015) <doi:10.1214/15-AOS1337> and fast survival analysis methods from Bi et al. (2020) <doi:10.1016/j.ajhg.2020.06.003>. A shrinkage algorithmic leveraging accelerates multiple knockoffs generation in large genetic cohorts. This CRAN version uses standard Cox regression for association testing. For enhanced performance on very large datasets, users may optionally install the SPACox package from GitHub which provides saddlepoint approximation methods for survival analysis.
The cito package provides a user-friendly interface for training and interpreting deep neural networks (DNN). cito simplifies the fitting of DNNs by supporting the familiar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and handle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, cito has many downstream functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs. cito optionally provides confidence intervals (and p-values) for all xAI metrics and predictions. At the same time, cito is computationally efficient because it is based on the deep learning framework torch'. The torch package is native to R, so no Python installation or other API is required for this package.
Prints code that can be used to recreate R objects. In a sense it is similar to base::dput() or base::deparse() but constructive strives to use idiomatic constructors.
This package provides functions for performing quick observations or evaluations of data, including a variety of ways to list objects by size, class, etc. The functions seqle and reverse.seqle mimic the base rle but can search for linear sequences. The function splatnd allows the user to generate zero-argument commands without the need for makeActiveBinding . Functions provided to convert from any base to any other base, and to find the n-th greatest max or n-th least min. In addition, functions which mimic Unix shell commands, including head', tail ,'pushd ,and popd'. Various other goodies included as well.
Ceteris Paribus Profiles (What-If Plots) are designed to present model responses around selected points in a feature space. For example around a single prediction for an interesting observation. Plots are designed to work in a model-agnostic fashion, they are working for any predictive Machine Learning model and allow for model comparisons. Ceteris Paribus Plots supplement the Break Down Plots from breakDown package.
Expectation-Maximization (EM) algorithm for point estimation and variance estimation to the nonparametric maximum likelihood estimator (NPMLE) for logistic-Cox cure-rate model with left truncation and right- censoring. See Hou, Chambers and Xu (2017) <doi:10.1007/s10985-017-9415-2>.
Computes the maximum likelihood estimator, the smoothed maximum likelihood estimator and pointwise bootstrap confidence intervals for the distribution function under current status data. Groeneboom and Hendrickx (2017) <doi:10.1214/17-EJS1345>.
Cohort plAtform Trial Simulation whereby every cohort consists of two arms, control and experimental treatment. Endpoints are co-primary binary endpoints and decisions are made using either Bayesian or frequentist decision rules. Realistic trial trajectories are simulated and the operating characteristics of the designs are calculated.
Trading of Condor Options Strategies is represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
This package provides methods for analyzing (cell) motion in two or three dimensions. Available measures include displacement, confinement ratio, autocorrelation, straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks, steps, or subtracks with varying length. While the methodology has been developed for cell trajectory analysis, it is applicable to anything that moves including animals, people, or vehicles. Some of the methodology implemented in this packages was described by: Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>, Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>, Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>, Mokhtari, Mech, Zitzmann, Hasenberg, Gunzer, and Figge (2013) <doi:10.1371/journal.pone.0080808>, Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>, Textor, Peixoto, Henrickson, Sinn, von Andrian, and Westermann (2011) <doi:10.1073/pnas.1102288108>, Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>, Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Beltman (2014) <doi:10.1371/journal.pcbi.1003752>.
Works with the Citizen Voting Age Population special tabulation from the US Census Bureau <https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html>. Provides tools to download and process raw data. Also provides a downloading interface to processed data. Implements a very basic approach to estimate block level citizen voting age population from block group data.
Shiny Web Application for the Multichannel Attribution Problem. It is a user-friendly graphical interface for package ChannelAttribution'.
It is devoted to Cramer-von Mises goodness-of-fit tests. It implements three statistical methods based on Cramer-von Mises statistics to estimate and test a regression model.
Calculate date of birth, age, and gender, and generate anonymous sequence numbers from CPR numbers. <https://en.wikipedia.org/wiki/Personal_identification_number_(Denmark)>.