An integrated set of functions for building, analyzing, and visualizing Analytic Hierarchy Process (AHP) models, designed to support structured decision-making in consultancy, policy analysis, and research (Bose 2022 <doi:10.1002/mcda.1784>; Bose 2023 <doi:10.1002/mcda.1821>). In addition to tools for assessing and improving the consistency of pairwise comparison matrices (PCMs), the package supports full-hierarchy weight computation, intuitive tree-based visualization, sensitivity analysis, along with convenient PCM generation from user preferences.
Biostatistical and clinical data analysis, including descriptive statistics, exploratory data analysis, sample size and power calculations, statistical inference, and data visualization. Normality tests are implemented following Mishra et al. (2019) <doi:10.4103/aca.ACA_157_18>, omnibus test procedures are based on Blanca et al. (2017) <doi:10.3758/s13428-017-0918-2> and Field et al. (2012, ISBN:9781446200469), while sample size and power calculation methods follow Chow et al. (2017) <doi:10.1201/9781315183084>.
Color palettes for all people, including those with color vision deficiency. Popular color palette series have been organized by type and have been scored on several properties such as color-blind-friendliness and fairness (i.e. do colors stand out equally?). Own palettes can also be loaded and analysed. Besides the common palette types (categorical, sequential, and diverging) it also includes cyclic and bivariate color palettes. Furthermore, a color for missing values is assigned to each palette.
Use spectrophotometry measurements performed on insects as a way to infer pathogens virulence. Insect movements cause fluctuations in fluorescence signal, and functions are provided to estimate when the insect has died as the moment when variance in autofluorescence signal drops to zero. The package provides functions to obtain this estimate together with functions to import spectrophotometry data from a Biotek microplate reader. Details of the method are given in Parthuisot et al. (2018) <doi:10.1101/297929>.
This package provides functions to have visualization and clean-up of enriched gene ontologies (GO) terms, protein complexes and pathways (obtained from multiple databases) using ConsensusPathDB from gene set over-expression analysis. Performs clustering of pathway based on similarity of over-expressed gene sets and visualizations similar to Ingenuity Pathway Analysis (IPA) when up and down regulated genes are known. The methods are described in a paper currently submitted by Orecchioni et al, 2020 in Nanoscale.
This package implements a variant of the Self-Organizing Map (SOM) algorithm designed for mixed-attribute datasets. Similarity between observations is computed using the Gower distance, and categorical prototypes are updated via heuristic strategies (weighted mode and multinomial sampling). Provides functions for model fitting, mapping, visualization (U-Matrix and component planes), and evaluation, making SOM applicable to heterogeneous real-world data. For methodological details see Sáez and Salas (2026) <doi:10.1007/s41060-025-00941-6>.
Implementation of a parametric joint model for modelling recurrent and competing event processes using generalised survival models as described in Entrop et al., (2025) <doi:10.1002/bimj.70038>. The joint model can subsequently be used to predict the mean number of events in the presence of competing risks at different time points. Comparisons of the mean number of event functions, e.g. the differences in mean number of events between two exposure groups, are also available.
This package implements an Integer Programming-based method for optimising genetic gain in polyclonal selection, where the goal is to select a group of genotypes that jointly meet multi-trait selection criteria. The method uses predictors of genotypic effects obtained from the fitting of mixed models. Its application is demonstrated with grapevine data, but is applicable to other species and breeding contexts. For more details see Surgy et al. (2025) <doi:10.1007/s00122-025-04885-0>.
This package provides a lightweight yet powerful framework for building robust data analysis pipelines. With pipeflow', you initialize a pipeline with your dataset and construct workflows step by step by adding R functions. You can modify, remove, or insert steps and parameters at any stage, while pipeflow ensures the pipeline's integrity. Overall, this package offers a beginner-friendly framework that simplifies and streamlines the development of data analysis pipelines by making them modular, intuitive, and adaptable.
Build your own universe of packages similar to the tidyverse package <https://tidyverse.org/> with this meta-package creator. Create a package-verse, or meta package, by supplying a custom name for the collection of packages and the vector of desired package names to includeâ and optionally supply a destination directory, an indicator of whether to keep the created package directory, and/or a vector of verbs implement via the usethis <http://usethis.r-lib.org/> package.
Visualizes sulcal morphometry data derived from BrainVisa <https://brainvisa.info/> including width, depth, surface area, and length. The package enables mapping of statistical group results or subject-level values onto cortical surface maps, with options to focus on all sulci or only selected regions of interest. Users can display all four measures simultaneously or restrict plots to chosen measures, creating composite, publication-quality brain visualizations in R to support the analysis and interpretation of sulcal morphology.
Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the seasonalview package. Uses the X-13-binaries from the x13binary package.
Efficient implementation of sparse group lasso with optional bound constraints on the coefficients; see <doi:10.18637/jss.v110.i06>. It supports the use of a sparse design matrix as well as returning coefficient estimates in a sparse matrix. Furthermore, it correctly calculates the degrees of freedom to allow for information criteria rather than cross-validation with very large data. Finally, the interface to compiled code avoids unnecessary copies and allows for the use of long integers.
Transfer learning for generalized factor models with support for continuous, count (Poisson), and binary data types. The package provides functions for single and multiple source transfer learning, source detection to identify positive and negative transfer sources, factor decomposition using Maximum Likelihood Estimation (MLE), and information criteria ('IC1 and IC2') for rank selection. The methods are particularly useful for high-dimensional data analysis where auxiliary information from related source datasets can improve estimation efficiency in the target domain.
A slightly modified version of rivertile layout generator for river.
Compared to rivertile, rivercarro adds:
Monocle layout, views will takes all the usable area on the screen.
Gaps instead of padding around views or layout area.
Modify gaps size at runtime.
Smart gaps, if there is only one view, gaps will be disable.
Limit the width of the usable area of the screen.
Per tag configurations.
Cycle through layout
Perform large scale genomic data retrieval and functional annotation retrieval. This package aims to provide users with a standardized way to automate genome, proteome, RNA, coding sequence (CDS), GFF, and metagenome retrieval from NCBI RefSeq, NCBI Genbank, ENSEMBL, and UniProt databases. Furthermore, an interface to the BioMart database allows users to retrieve functional annotation for genomic loci. In addition, users can download entire databases such as NCBI RefSeq, NCBI nr, NCBI nt, NCBI Genbank, etc with only one command.
This package assists in demultiplexing scRNAseq data using both cell hashing and SNPs data. The SNP profile of each group os learned using high confidence assignments from the cell hashing data. Cells which cannot be assigned with high confidence from the cell hashing data are assigned to their most similar group based on their SNPs. We also provide some helper function to optimise SNP selection, create training data and merge SNP data into the SingleCellExperiment framework.
The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values.
This package creates a 3D data cube view of a RasterStack/Brick, typically a collection/array of RasterLayers (along z-axis) with the same geographical extent (x and y dimensions) and resolution, provided by package raster'. Slices through each dimension (x/y/z), freely adjustable in location, are mapped to the visible sides of the cube. The cube can be freely rotated. Zooming and panning can be used to focus on different areas of the cube.
Analysis of network community objects with applications to neuroimaging data. There are two main components to this package. The first is the hierarchical multimodal spinglass (HMS) algorithm, which is a novel community detection algorithm specifically tailored to the unique issues within brain connectivity. The other is a suite of semiparametric kernel machine methods that allow for statistical inference to be performed to test for potential associations between these community structures and an outcome of interest (binary or continuous).
Explore calcium (Ca) and phosphate (Pi) homeostasis with two novel Shiny apps, building upon on a previously published mathematical model written in C, to ensure efficient computations. The underlying model is accessible here <https://pubmed.ncbi.nlm.nih.gov/28747359/)>. The first application explores the fundamentals of Ca-Pi homeostasis, while the second provides interactive case studies for in-depth exploration of the topic, thereby seeking to foster student engagement and an integrative understanding of Ca-Pi regulation.
An implementation of major general-purpose mechanisms for privatizing statistics, models, and machine learners, within the framework of differential privacy of Dwork et al. (2006) <doi:10.1007/11681878_14>. Example mechanisms include the Laplace mechanism for releasing numeric aggregates, and the exponential mechanism for releasing set elements. A sensitivity sampler (Rubinstein & Alda, 2017) <arXiv:1706.02562> permits sampling target non-private function sensitivity; combined with the generic mechanisms, it permits turn-key privatization of arbitrary programs.
Makes it easy to engage with the Application Program Interface (API) of the TCdata360 and Govdata360 platforms at <https://tcdata360.worldbank.org/> and <https://govdata360.worldbank.org/>, respectively. These application program interfaces provide access to over 5000 trade, competitiveness, and governance indicator data, metadata, and related information from sources both inside and outside the World Bank Group. Package functions include easier download of data sets, metadata, and related information, as well as searching based on user-inputted query.
Implementation of frequency tables and bar charts for qualitative variables and checkbox fields. This package implements tables and charts used in reports at Funarte (National Arts Foundation) and OBEC (Culture and Creative Economy Observatory) in Brazil, and its main purpose is to simplify the use of R for people with a background in the humanities and arts. Examples and details can be viewed in this presentation from 2026: <https://formacao2026.netlify.app/assets/modulo_3/modulo3#/title-slide>.