For a multisite replication project, computes the consistency metric P_orig, which is the probability that the original study would observe an estimated effect size as extreme or more extreme than it actually did, if in fact the original study were statistically consistent with the replications. Other recommended metrics are: (1) the probability of a true effect of scientifically meaningful size in the same direction as the estimate the original study; and (2) the probability of a true effect of meaningful size in the direction opposite the original study's estimate. These two can be computed using the package \codeMetaUtility::prop_stronger. Additionally computes older metrics used in replication projects (namely expected agreement in "statistical significance" between an original study and replication studies as well as prediction intervals for the replication estimates). See Mathur and VanderWeele (under review; <https://osf.io/apnjk/>) for details.
Deals with many computations related to the thermodynamics of atmospheric processes. It includes many functions designed to consider the density of air with varying degrees of water vapour in it, saturation pressures and mixing ratios, conversion of moisture indices, computation of atmospheric states of parcels subject to dry or pseudoadiabatic vertical evolutions and atmospheric instability indices that are routinely used for operational weather forecasts or meteorological diagnostics.
This package performs multiple comparison procedures on curve observations among different treatment groups. The methods are applicable in a variety of situations (such as independent groups with equal or unequal sample sizes, or repeated measures) by using parametric bootstrap. References to these procedures can be found at Konietschke, Gel, and Brunner (2014) <doi:10.1090/conm/622/12431> and Westfall (2011) <doi:10.1080/10543406.2011.607751>.
To improve estimation accuracy and stability in statistical modeling, catalytic prior distributions are employed, integrating observed data with synthetic data generated from a simpler model's predictive distribution. This approach enhances model robustness, stability, and flexibility in complex data scenarios. The catalytic prior distributions are introduced by Huang et al. (2020, <doi:10.1073/pnas.1920913117>), Li and Huang (2023, <doi:10.48550/arXiv.2312.01411>).
This package provides functions to pipe data from R to DataGraph', a graphing and analysis application for mac OS. Create a live connection using either .dtable or .dtbin files that can be read by DataGraph'. Can save a data frame, collection of data frames and sequences of data frames and individual vectors. For more information see <https://community.visualdatatools.com/datagraph/knowledge-base/r-package/>.
Simulates plot data in multi-environment field trials with one or more traits. Its core function generates plot errors that capture spatial trend, random error (noise), and extraneous variation, which are combined at a user-defined ratio. Phenotypes can be generated by combining the plot errors with simulated genetic values that capture genotype-by-environment (GxE) interaction using wrapper functions for the R package `AlphaSimR`.
This package provides method used to check whether data have outlier in efficiency measurement of big samples with data envelopment analysis (DEA). In this jackstrap method, the package provides two criteria to define outliers: heaviside and k-s test. The technique was developed by Sousa and Stosic (2005) "Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers." <doi:10.1007/s11123-005-4702-4>.
This package contains functions for a flexible varying-coefficient landmark model by incorporating multiple short-term events into the prediction of long-term survival probability. For more information about landmark prediction please see Li, W., Ning, J., Zhang, J., Li, Z., Savitz, S.I., Tahanan, A., Rahbar.M.H., (2023+). "Enhancing Long-term Survival Prediction with Multiple Short-term Events: Landmarking with A Flexible Varying Coefficient Model".
In the case of multivariate ordinal responses, parameter estimates can be severely biased if personal response styles are ignored. This packages provides methods to account for personal response styles and to explain the effects of covariates on the response style, as proposed by Schauberger and Tutz 2021 <doi:10.1177/1471082X20978034>. The method is implemented both for the multivariate cumulative model and the multivariate adjacent categories model.
This package provides methods and classes for adding m-activation ("multiplicative activation") layers to MLR or multivariate logistic regression models. M-activation layers created in this library detect and add input interaction (polynomial) effects into a predictive model. M-activation can detect high-order interactions -- a traditionally non-trivial challenge. Details concerning application, methodology, and relevant survey literature can be found in this library's vignette, "About.".
Bayesian multivariate age-period-cohort (MAPC) models for analyzing health data, with support for model fitting, visualization, stratification, and model comparison. Inference focuses on identifiable cross-strata differences, as described by Riebler and Held (2010) <doi:10.1093/biostatistics/kxp037>. Methods for handling complex survey data via the survey package are included, as described in Mercer et al. (2014) <doi:10.1016/j.spasta.2013.12.001>.
The nonparametric two-stage Bayesian adaptive design is a novel phase II clinical trial design for finding the minimum effective dose (MinED). This design is motivated by the top priority and concern of clinicians when testing a new drug, which is to effectively treat patients and minimize the chance of exposing them to subtherapeutic or overly toxic doses. It is used to design single-agent trials.
Power and sample size calculation for bulk tissue and single-cell eQTL analysis based on ANOVA, simple linear regression, or linear mixed effects model. It can also calculate power/sample size for testing the association of a SNP to a continuous type phenotype. Please see the reference: Dong X, Li X, Chang T-W, Scherzer CR, Weiss ST, Qiu W. (2021) <doi:10.1093/bioinformatics/btab385>.
One of the main advantages of using Generalised Linear Models is their interpretability. The goal of prettyglm is to provide a set of functions which easily create beautiful coefficient summaries which can readily be shared and explained. prettyglm helps users create coefficient summaries which include categorical base levels, variable importance and type III p.values. prettyglm also creates beautiful relativity plots for categorical, continuous and splined coefficients.
ProTracker is a popular music tracker to sequence music on a Commodore Amiga machine. This package offers the opportunity to import, export, manipulate and play ProTracker module files. Even though the file format could be considered archaic, it still remains popular to this date. This package intends to contribute to this popularity and therewith keeping the legacy of ProTracker and the Commodore Amiga alive.
Programmatic interface to the PhenoCam web services (<https://phenocam.nau.edu/webcam>). Allows for easy downloading of PhenoCam data directly to your R workspace or your computer and provides post-processing routines for consistent and easy timeseries outlier detection, smoothing and estimation of phenological transition dates. Methods for this package are described in detail in Hufkens et. al (2018) <doi:10.1111/2041-210X.12970>.
Using a time-varying random parameters model developed in Koutchade et al., (2024) <https://hal.science/hal-04318163>, this package allows allocating variable input costs among crops produced by farmers based on panel data including information on input expenditure aggregated at the farm level and acreage shares. It also considers in fairly way the weighting data and can allow integrating time-varying and time-constant control variables.
Pqsfinder detects DNA and RNA sequence patterns that are likely to fold into an intramolecular G-quadruplex (G4). Unlike many other approaches, pqsfinder is able to detect G4s folded from imperfect G-runs containing bulges or mismatches or G4s having long loops. Pqsfinder also assigns an integer score to each hit that was fitted on G4 sequencing data and corresponds to expected stability of the folded G4.
In order to assess the quality of a set of predicted genes for a genome, evidence must first be mapped to that genome. Next, each gene must be categorized based on how strong the evidence is for or against that gene. The AssessORF package provides the functions and class structures necessary for accomplishing those tasks, using proteomics hits and evolutionarily conserved start codons as the forms of evidence.
This package is meant to ease the creation of time-to-event (i.e. survival) endpoint figures. The modular functions create figures ready for publication. Each of the functions that add to or modify the figure are written as proper ggplot2 geoms or stat methods, allowing the functions from this package to be combined with any function or customization from ggplot2 and other ggplot2 extension packages.
One and two sample mean and variance tests (differences and ratios) are considered. The test statistics are all expressed in the same form as the Student t-test, which facilitates their presentation in the classroom. This contribution also fills the gap of a robust (to non-normality) alternative to the chi-square single variance test for large samples, since no such procedure is implemented in standard statistical software.
This package provides the ability to display something analogous to Python's docstrings within R. By allowing the user to document their functions as comments at the beginning of their function without requiring putting the function into a package we allow more users to easily provide documentation for their functions. The documentation can be viewed just like any other help files for functions provided by packages as well.
Calculation and plotting of instantaneous unavailabilities of basic events along with the top event of fault trees are issues important in reliability analysis of complex systems. Here, a fault tree is provided in terms of its minimal cut sets, along with reliability and maintainability distribution functions of the basic events. All the methods are derived from Horton (2002, ISBN: 3-936150-21-4), Niloofar and Lazarova-Molnar (2022).
It provides an effective, efficient, and fast way to explore the Gene Ontology (GO). Given a set of genes, the package contains functions to assess the GO and obtain the terms associated with the genes and the levels of the GO terms. The package provides functions for the three different GO ontology. We discussed the methods explicitly in the following article <doi:10.1038/s41598-020-73326-3>.