We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).
This package implements fast hierarchical, agglomerative clustering routines. Part of the functionality is designed as drop-in replacement for existing routines: linkage()
in the SciPy package scipy.cluster.hierarchy
, hclust()
in R's stats
package, and the flashClust
package. It provides the same functionality with the benefit of a much faster implementation. Moreover, there are memory-saving routines for clustering of vector data, which go beyond what the existing packages provide.
This package computes optimized distance and similarity measures for comparing probability functions (Drost (2018) <doi:10.21105/joss.00765>). These comparisons between probability functions have their foundations in a broad range of scientific disciplines from mathematics to ecology. The aim of this package is to provide a core framework for clustering, classification, statistical inference, goodness-of-fit, non-parametric statistics, information theory, and machine learning tasks that are based on comparing univariate or multivariate probability functions.
This package provides methods to deal with the free antiassociative algebra over the reals with an arbitrary number of indeterminates. Antiassociativity means that (xy)z = -x(yz). Antiassociative algebras are nilpotent with nilindex four (Remm, 2022, <doi:10.48550/arXiv.2202.10812>
) and this drives the design and philosophy of the package. Methods are defined to create and manipulate arbitrary elements of the antiassociative algebra, and to extract and replace coefficients. A vignette is provided.
This package provides more than 550 data sets of actual election results. Each of the data sets includes aggregate party and candidate outcomes at the voting unit (polling stations) level and two-way cross-tabulated results at the district level. These data sets can be used to assess ecological inference algorithms devised for estimating RxC
(global) ecological contingency tables using exclusively aggregate results from voting units. Reference: Pavà a (2022) <doi:10.1177/08944393211040808>.
The HBV hydrological model (Bergström, S. and Lindström, G., (2015) <doi:10.1002/hyp.10510>) has been split in modules to allow the user to build his/her own model. This version was developed by the author in IANIGLA-CONICET (Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales - Consejo Nacional de Investigaciones Cientificas y Tecnicas) for hydroclimatic studies in the Andes. HBV.IANIGLA incorporates routines for clean and debris covered glacier melt simulations.
This package provides a comprehensive tool for almost all existing multiple testing methods for discrete data. The package also provides some novel multiple testing procedures controlling FWER/FDR for discrete data. Given discrete p-values and their domains, the [method].p.adjust function returns adjusted p-values, which can be used to compare with the nominal significant level alpha and make decisions. For users convenience, the functions also provide the output option for printing decision rules.
This package provides intuitive functions for caching R objects, encouraging reproducible, restartable, and distributed R analysis. The user selects a location to store caches, and then provides nothing more than a cache name and instructions (R code) for how to produce the R object. Also provides some advanced options like environment assignments, recreating or reloading caches, and cluster compute bindings (using the batchtools package) making it flexible enough for use in large-scale data analysis projects.
Offers a solution for the unavailability of raw data in most anthropological studies by facilitating the calculations of several sexual dimorphism related analyses using the published summary statistics of metric data (mean, standard deviation and sex specific sample size) as illustrated by the works of Relethford, J. H., & Hodges, D. C. (1985) <doi:10.1002/ajpa.1330660105>, Greene, D. L. (1989) <doi:10.1002/ajpa.1330790113> and Konigsberg, L. W. (1991) <doi:10.1002/ajpa.1330840110>.
(guix-science-nonfree packages bioconductor)
This package is used for the detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. It also provides the possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots.
An interface to Azure Computer Vision <https://docs.microsoft.com/azure/cognitive-services/Computer-vision/Home> and Azure Custom Vision <https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home>, building on the low-level functionality provided by the AzureCognitive
package. These services allow users to leverage the cloud to carry out visual recognition tasks using advanced image processing models, without needing powerful hardware of their own. Part of the AzureR
family of packages.
This package provides a set of user-friendly functions designed to fill gaps in existing introductory biostatistics R tools, making it easier for newcomers to perform basic biostatistical analyses without needing advanced programming skills. The methods implemented in this package are based on the works: Connor (1987) <doi:10.2307/2531961> Fleiss, Levin, & Paik (2013, ISBN:978-1-118-62561-3) Levin & Chen (1999) <doi:10.1080/00031305.1999.10474431> McNemar
(1947) <doi:10.1007/BF02295996>.
This package provides functions for the estimation of conditional copulas models, various estimators of conditional Kendall's tau (proposed in Derumigny and Fermanian (2019a, 2019b, 2020) <doi:10.1515/demo-2019-0016>, <doi:10.1016/j.csda.2019.01.013>, <doi:10.1016/j.jmva.2020.104610>), and test procedures for the simplifying assumption (proposed in Derumigny and Fermanian (2017) <doi:10.1515/demo-2017-0011> and Derumigny, Fermanian and Min (2022) <doi:10.1002/cjs.11742>).
Variable selection for Gaussian model-based clustering as implemented in the mclust package. The methodology allows to find the (locally) optimal subset of variables in a data set that have group/cluster information. A greedy or headlong search can be used, either in a forward-backward or backward-forward direction, with or without sub-sampling at the hierarchical clustering stage for starting mclust models. By default the algorithm uses a sequential search, but parallelisation is also available.
Access and manage the application programming interface (API) of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) ReliefWeb
disaster events at <https://reliefweb.int/disasters>. The package requires a minimal number of dependencies. It offers functionality to retrieve a user-defined sample of disaster events from ReliefWeb
, providing an easy alternative to scraping the ReliefWeb
website. It enables a seamless integration of regular data updates into the research work flow.
This package provides tools for Markov Chain Monte Carlo (MCMC) simulation and performance analysis. Simulate MCMC algorithms including adaptive MCMC, evaluate their convergence rate, and compare candidate MCMC algorithms for a same target density, based on entropy and Kullback-Leibler divergence criteria. MCMC algorithms can be simulated using provided functions, or imported from external codes. This package is based upon work starting with Chauveau, D. and Vandekerkhove, P. (2013) <doi:10.1051/ps/2012004> and next articles.
This package provides tools for estimate (joint) cumulants and (joint) products of cumulants of a random sample using (multivariate) k-statistics and (multivariate) polykays, unbiased estimators with minimum variance. Tools for generating univariate and multivariate Faa di Bruno's formula and related polynomials, such as Bell polynomials, generalized complete Bell polynomials, partition polynomials and generalized partition polynomials. For more details see Di Nardo E., Guarino G., Senato D. (2009) <arXiv:0807.5008>
, <arXiv:1012.6008>
.
L-systems or Lindenmayer systems are parallel rewriting systems which can be used to simulate biological forms and certain kinds of fractals. Briefly, in an L-system a series of symbols in a string are replaced iteratively according to rules to give a more complex string. Eventually, the symbols are translated into turtle graphics for plotting. Wikipedia has a very good introduction: en.wikipedia.org/wiki/L-system This package provides basic functions for exploring L-systems.
The mlrMBO
package can ordinarily not be used for optimization within mlr3', because of incompatibilities of their respective class systems. mlrintermbo offers a compatibility interface that provides mlrMBO
as an mlr3tuning Tuner object, for tuning of machine learning algorithms within mlr3', as well as a bbotk Optimizer object for optimization of general objective functions using the bbotk black box optimization framework. The control parameters of mlrMBO
are faithfully reproduced as a paradox ParamSet
'.
Estimates marginal causal excursion effects and moderated causal excursion effects for micro-randomized trial (MRT). Applicable to MRT with binary treatment options and continuous or binary outcomes. The method for MRT with continuous outcomes is the weighted centered least squares (WCLS) by Boruvka et al. (2018) <doi:10.1080/01621459.2017.1305274>. The method for MRT with binary outcomes is the estimator for marginal excursion effect (EMEE) by Qian et al. (2021) <doi:10.1093/biomet/asaa070>.
This package provides quality control (QC), normalization, and batch effect correction operations for NanoString
nCounter
data, Talhouk et al. (2016) <doi:10.1371/journal.pone.0153844>. Various metrics are used to determine which samples passed or failed QC. Gene expression should first be normalized to housekeeping genes, before a reference-based approach is used to adjust for batch effects. Raw NanoString
data can be imported in the form of Reporter Code Count (RCC) files.
This package provides functions for solving systems of delay differential equations by interfacing with numerical routines written by Simon N. Wood, including contributions from Benjamin J. Cairns. These numerical routines first appeared in Simon Wood's solv95 program. This package includes a vignette and a complete user's guide. PBSddesolve originally appeared on CRAN under the name ddesolve'. That version is no longer supported. The current name emphasizes a close association with other PBS packages, particularly PBSmodelling'.
AnyStyle is a very fast and smart parser for academic reference lists and bibliographies. AnyStyle uses powerful machine learning heuristics based on Conditional Random Fields and aims to make it easy to train the model with data that is relevant to your parsing needs.
This package provides the Ruby module AnyStyle
. AnyStyle can also be used via the anystyle
command-line utility or a web application, though the later has not yet been packaged for Guix.
Estimate fish length-at-age models using MCMC analysis with rstan models. This package allows a multimodel approach to growth fitting to be applied to length-at-age data and is supported by further analyses to determine model selection and result presentation. The core methods of this package are presented in Smart and Grammer (2021) "Modernising fish and shark growth curves with Bayesian length-at-age models". PLOS ONE 16(2): e0246734 <doi:10.1371/journal.pone.0246734>.