Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package allows to detect and correct for spatial and intensity biases with two-channel microarray data. The normalization method implemented in this package is based on robust neural networks fitting.
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.
This package provides tools for NanoString Technologies nCounter Technology. Provides support for reading RCC files into an ExpressionSet derived object. Also includes methods for QC and normalizaztion of NanoString data.
This package provides visualization functionality for untargeted LC-MS metabolomics research. Includes quality control visualizations, feature-wise visualizations and results visualizations.
This package provides a model for semi-supervised prioritisation of genes integrating network data, phenotypes and additional prior knowledge about TP and TN gene labels from the literature or experts.
This package provides methods to model and impute non-detects in the results of qPCR experiments.
This package provides datasets for the nullranges package vignette, in particular example datasets for DNase hypersensitivity sites (DHS), CTCF binding sites, and CTCF genomic interactions. These are used to demonstrate generation of null hypothesis feature sets, either through block bootstrapping or matching, in the nullranges vignette. For more details, see the data object man pages, and the R scripts for object construction provided within the package.
This package provides a pipeline to discern RNA structure at and proximal to the site of protein binding within regions of the transcriptome defined by the user. CLIP protein-binding data can be input as either aligned BAM or peak-called bedGraph files. RNA structure can either be predicted internally from sequence or users have the option to input their own RNA structure data. RNA structure binding profiles can be visually and quantitatively compared across multiple formats.
This package provides next-generation sequencing (NGS) and mass spectrometry (MS) sample data, code snippets and replication material used for developing NestLink. The NestLink approach is a protein binder selection and identification technology able to biophysically characterize thousands of library members at once without handling individual clones at any stage of the process. Data were acquired on NGS and MS platforms at the Functional Genomics Center Zurich.
Modular package for generation of sets of ranges representing the null hypothesis. These can take the form of bootstrap samples of ranges (using the block bootstrap framework of Bickel et al 2010), or sets of control ranges that are matched across one or more covariates. nullranges is designed to be inter-operable with other packages for analysis of genomic overlap enrichment, including the plyranges Bioconductor package.
NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis.
nuCpos, a derivative of NuPoP, is an R package for prediction of nucleosome positions. nuCpos calculates local and whole nucleosomal histone binding affinity (HBA) scores for a given 147-bp sequence. Note: This package was designed to demonstrate the use of chemical maps in prediction. As the parental package NuPoP now provides chemical-map-based prediction, the function for dHMM-based prediction was removed from this package. nuCpos continues to provide functions for HBA calculation.
Robust normalization and difference calling procedures for ChIP-seq and alike data. Read counts are modeled jointly as a binomial mixture model with a user-specified number of components. A fitted background estimate accounts for the effect of enrichment in certain regions and, therefore, represents an appropriate null hypothesis. This robust background is used to identify significantly enriched or depleted regions.
This package provides a package containing an environment representing the NuGO_Mm1a520177.cdf file.
# NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models.
The NanoporeRNASeq package contains long read RNA-Seq data generated using Oxford Nanopore Sequencing. The data consists of 6 samples from two human cell lines (K562 and MCF7) that were generated by the SG-NEx project. Each of these cell lines has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. Reads are aligned to chromosome 22 (Grch38) and stored as bam files. The original data is from the SG-NEx project.
Boosting supported network analysis for high-dimensional omics applications. This package comes bundled with the MC-UPGMA clustering package by Yaniv Loewenstein.
This package provides a model designed for dimensionality reduction and batch effect removal for scRNA-seq data. It is designed to be massively parallelizable using shared objects that prevent memory duplication, and it can be used with different mini-batch approaches in order to reduce time consumption. It assumes a negative binomial distribution for the data with a dispersion parameter that can be both commonwise across gene both genewise.
This package provides example one-dimensional proton NMR spectra of murine urine samples collected before and after bariatric or sham surgery (Roux-en-Y gastric bypass). The data are adapted from Jia V Li et al. (2011), "Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk", Gut, 60(9), 1214–1223. <doi:10.1136/gut.2010.234708>. This package serves as example data for metabolomics analysis and teaching purposes.
The purpose of ncGTW is to help XCMS for LC-MS data alignment. Currently, ncGTW can detect the misaligned feature groups by XCMS, and the user can choose to realign these feature groups by ncGTW or not.
Affymetrix nugohs1a520180 annotation data (chip nugohs1a520180) assembled using data from public repositories.
Supporting data for package OMICsPCA.
Graphical user interface for the OLIN package.
Detection of similarities between ordered lists of genes. Thereby, either simple lists can be compared or gene expression data can be used to deduce the lists. Significance of similarities is evaluated by shuffling lists or by resampling in microarray data, respectively.