Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
DEMAND predicts Drug MoA by interrogating a cell context specific regulatory network with a small number (N >= 6) of compound-induced gene expression signatures, to elucidate specific proteins whose interactions in the network is dysregulated by the compound.
Analyze microarray data.
This package provides a package containing an environment representing the DrosGenome1.CDF file.
This package provides a reproducible and modular workflow for absolute microbial quantification using spike-in controls. Supports both single spike-in taxa and synthetic microbial communities with user-defined spike-in volumes and genome copy numbers. Compatible with phyloseq and TreeSummarizedExperiment (TSE) data structures. The package implements methods for spike-in validation, preprocessing, scaling factor estimation, absolute abundance conversion, bias correction, and normalization. Facilitates downstream statistical analyses with DESeq2', edgeR', and other Bioconductor-compatible methods. Visualization tools are provided via ggplot2', ggtree', and related packages. Includes detailed vignettes, case studies, and function-level documentation to guide users through experimental design, quantification, and interpretation.
Distance-correlation based Gene Set Analysis for longitudinal gene expression profiles. In longitudinal studies, the gene expression profiles were collected at each visit from each subject and hence there are multiple measurements of the gene expression profiles for each subject. The dcGSA package could be used to assess the associations between gene sets and clinical outcomes of interest by fully taking advantage of the longitudinal nature of both the gene expression profiles and clinical outcomes.
This package contains the data for the paper by L. David et al. in PNAS 2006 (PMID 16569694): 8 CEL files of Affymetrix genechips, an ExpressionSet object with the raw feature data, a probe annotation data structure for the chip and the yeast genome annotation (GFF file) that was used. In addition, some custom-written analysis functions are provided, as well as R scripts in the scripts directory.
DNAhapeR is an R/BioConductor package for ultra-fast, high-throughput predictions of DNA shape features. The package allows to predict, visualize and encode DNA shape features for statistical learning.
This package implements a DelayedArray of random values where the realization of the sampled values is delayed until they are needed. Reproducible sampling within any subarray is achieved by chunking where each chunk is initialized with a different random seed and stream. The usual distributions in the stats package are supported, along with scalar, vector and arrays for the parameters.
data and software for checking Dressman JCO 25(5) 2007.
DEsubs is a network-based systems biology package that extracts disease-perturbed subpathways within a pathway network as recorded by RNA-seq experiments. It contains an extensive and customizable framework covering a broad range of operation modes at all stages of the subpathway analysis, enabling a case-specific approach. The operation modes refer to the pathway network construction and processing, the subpathway extraction, visualization and enrichment analysis with regard to various biological and pharmacological features. Its capabilities render it a tool-guide for both the modeler and experimentalist for the identification of more robust systems-level biomarkers for complex diseases.
Detects differential interactions across biological conditions in a Hi-C experiment. Methods are provided for read alignment and data pre-processing into interaction counts. Statistical analysis is based on edgeR and supports normalization and filtering. Several visualization options are also available.
DegCre generates associations between differentially expressed genes (DEGs) and cis-regulatory elements (CREs) based on non-parametric concordance between differential data. The user provides GRanges of DEG TSS and CRE regions with differential p-value and optionally log-fold changes and DegCre returns an annotated Hits object with associations and their calculated probabilities. Additionally, the package provides functionality for visualization and conversion to other formats.
The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package).
This package provides a tool for the identification of differentially coexpressed links (DCLs) and differentially coexpressed genes (DCGs). DCLs are gene pairs with significantly different correlation coefficients under two conditions. DCGs are genes with significantly more DCLs than by chance.
Based on the standard DataFrame metaphor, we are trying to implement the feature of delayed operation on the DelayedDataFrame, with a slot of lazyIndex, which saves the mapping indexes for each column of DelayedDataFrame. Methods like show, validity check, [/[[ subsetting, rbind/cbind are implemented for DelayedDataFrame to be operated around lazyIndex. The listData slot stays untouched until a realization call e.g., DataFrame constructor OR as.list() is invoked.
This package contains implementation of DecontX (Yang et al. 2020), a decontamination algorithm for single-cell RNA-seq, and DecontPro (Yin et al. 2023), a decontamination algorithm for single cell protein expression data. DecontX is a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. DecontPro is a Bayesian method that estimates the level of contamination from ambient and background sources in CITE-seq ADT dataset and decontaminate the dataset.
Given a set of clustering labels, Dune merges pairs of clusters to increase mean ARI between labels, improving replicability.
Damsel provides an end to end analysis of DamID data. Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes. Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2. Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis. Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R.
This package generates ranked lists of differential gene expression for either disease or drug profiles. Input data can be downloaded from Array Express or GEO, or from local CEL files. Ranked lists of differential expression and associated p-values are calculated using Limma. Enrichment scores (Subramanian et al. PNAS 2005) are calculated to a reference set of default drug or disease profiles, or a set of custom data supplied by the user. Network visualisation of significant scores are output in Cytoscape format.
This package provides a supervised technique able to identify differentially expressed genes, based on the construction of \emphFuzzy Patterns (FPs). The Fuzzy Patterns are built by means of applying 3 Membership Functions to discretized gene expression values.
The functions support identification and annotation of hotspot residues in proteins. These are individual amino acids that accumulate mutations at a much higher rate than their surrounding regions.
doseR package is a next generation sequencing package for sex chromosome dosage compensation which can be applied broadly to detect shifts in gene expression among an arbitrary number of pre-defined groups of loci. doseR is a differential gene expression package for count data, that detects directional shifts in expression for multiple, specific subsets of genes, broad utility in systems biology research. doseR has been prepared to manage the nature of the data and the desired set of inferences. doseR uses S4 classes to store count data from sequencing experiment. It contains functions to normalize and filter count data, as well as to plot and calculate statistics of count data. It contains a framework for linear modeling of count data. The package has been tested using real and simulated data.
DEGseq is an R package to identify differentially expressed genes from RNA-Seq data.
doubletrouble aims to identify duplicated genes from whole-genome protein sequences and classify them based on their modes of duplication. The duplication modes are i. segmental duplication (SD); ii. tandem duplication (TD); iii. proximal duplication (PD); iv. transposed duplication (TRD) and; v. dispersed duplication (DD). Transposon-derived duplicates (TRD) can be further subdivided into rTRD (retrotransposon-derived duplication) and dTRD (DNA transposon-derived duplication). If users want a simpler classification scheme, duplicates can also be classified into SD- and SSD-derived (small-scale duplication) gene pairs. Besides classifying gene pairs, users can also classify genes, so that each gene is assigned a unique mode of duplication. Users can also calculate substitution rates per substitution site (i.e., Ka and Ks) from duplicate pairs, find peaks in Ks distributions with Gaussian Mixture Models (GMMs), and classify gene pairs into age groups based on Ks peaks.