Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Inference of Genetic Variants Driving Cellullar Phenotypes by the DIGGIT algorithm.
Damsel provides an end to end analysis of DamID data. Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes. Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2. Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis. Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R.
Label propagation approaches are a widely used procedure in computational biology for giving context to molecular entities using network data. Node labels, which can derive from gene expression, genome-wide association studies, protein domains or metabolomics profiling, are propagated to their neighbours in the network, effectively smoothing the scores through prior annotated knowledge and prioritising novel candidates. The R package diffuStats contains a collection of diffusion kernels and scoring approaches that facilitates their computation, characterisation and benchmarking.
The DaMiRseq package offers a tidy pipeline of data mining procedures to identify transcriptional biomarkers and exploit them for both binary and multi-class classification purposes. The package accepts any kind of data presented as a table of raw counts and allows including both continous and factorial variables that occur with the experimental setting. A series of functions enable the user to clean up the data by filtering genomic features and samples, to adjust data by identifying and removing the unwanted source of variation (i.e. batches and confounding factors) and to select the best predictors for modeling. Finally, a "stacking" ensemble learning technique is applied to build a robust classification model. Every step includes a checkpoint that the user may exploit to assess the effects of data management by looking at diagnostic plots, such as clustering and heatmaps, RLE boxplots, MDS or correlation plot.
The dks package consists of a set of diagnostic functions for multiple testing methods. The functions can be used to determine if the p-values produced by a multiple testing procedure are correct. These functions are designed to be applied to simulated data. The functions require the entire set of p-values from multiple simulated studies, so that the joint distribution can be evaluated.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was DrosGenome1\_probe\_tab.
This package detects significant differentially methylated regions (for both qualitative and quantitative traits), using a scan statistic with underlying Poisson heuristics. The scan statistic will depend on a sequence of window sizes (# of CpGs within each window) and on a threshold for each window size. This threshold can be calculated by three different means: i) analytically using Siegmund et.al (2012) solution (preferred), ii) an important sampling as suggested by Zhang (2008), and a iii) full MCMC modeling of the data, choosing between a number of different options for modeling the dependency between each CpG.
Dino normalizes single-cell, mRNA sequencing data to correct for technical variation, particularly sequencing depth, prior to downstream analysis. The approach produces a matrix of corrected expression for which the dependency between sequencing depth and the full distribution of normalized expression; many existing methods aim to remove only the dependency between sequencing depth and the mean of the normalized expression. This is particuarly useful in the context of highly sparse datasets such as those produced by 10X genomics and other uninque molecular identifier (UMI) based microfluidics protocols for which the depth-dependent proportion of zeros in the raw expression data can otherwise present a challenge.
The functions support identification and annotation of hotspot residues in proteins. These are individual amino acids that accumulate mutations at a much higher rate than their surrounding regions.
This package provides a tool for the identification of differentially coexpressed links (DCLs) and differentially coexpressed genes (DCGs). DCLs are gene pairs with significantly different correlation coefficients under two conditions. DCGs are genes with significantly more DCLs than by chance.
Dynamic Transcriptome Analysis (DTA) can monitor the cellular response to perturbations with higher sensitivity and temporal resolution than standard transcriptomics. The package implements the underlying kinetic modeling approach capable of the precise determination of synthesis- and decay rates from individual microarray or RNAseq measurements.
This package provides functionality for performing divergence analysis as presented in Dinalankara et al, "Digitizing omics profiles by divergence from a baseline", PANS 2018. This allows the user to simplify high dimensional omics data into a binary or ternary format which encapsulates how the data is divergent from a specified baseline group with the same univariate or multivariate features.
DEGraph implements recent hypothesis testing methods which directly assess whether a particular gene network is differentially expressed between two conditions. This is to be contrasted with the more classical two-step approaches which first test individual genes, then test gene sets for enrichment in differentially expressed genes. These recent methods take into account the topology of the network to yield more powerful detection procedures. DEGraph provides methods to easily test all KEGG pathways for differential expression on any gene expression data set and tools to visualize the results.
DelayedTensor operates Tensor arithmetic directly on DelayedArray object. DelayedTensor provides some generic function related to Tensor arithmetic/decompotision and dispatches it on the DelayedArray class. DelayedTensor also suppors Tensor contraction by einsum function, which is inspired by numpy einsum.
DiffLogo is an easy-to-use tool to visualize motif differences.
This package contains implementation of DecontX (Yang et al. 2020), a decontamination algorithm for single-cell RNA-seq, and DecontPro (Yin et al. 2023), a decontamination algorithm for single cell protein expression data. DecontX is a novel Bayesian method to computationally estimate and remove RNA contamination in individual cells without empty droplet information. DecontPro is a Bayesian method that estimates the level of contamination from ambient and background sources in CITE-seq ADT dataset and decontaminate the dataset.
This package provides expression profile and CNV data for glioblastoma from TCGA, and transcriptional and post-translational regulatory networks assembled with the ARACNe and MINDy algorithms, respectively.
This package assists in demultiplexing scRNAseq data using both cell hashing and SNPs data. The SNP profile of each group os learned using high confidence assignments from the cell hashing data. Cells which cannot be assigned with high confidence from the cell hashing data are assigned to their most similar group based on their SNPs. We also provide some helper function to optimise SNP selection, create training data and merge SNP data into the SingleCellExperiment framework.
dStruct identifies differentially reactive regions from RNA structurome profiling data. dStruct is compatible with a broad range of structurome profiling technologies, e.g., SHAPE-MaP, DMS-MaPseq, Structure-Seq, SHAPE-Seq, etc. See Choudhary et al., Genome Biology, 2019 for the underlying method.
Preprocessed experimental and simulated scRNA-seq data sets used for evaluation of clustering methods for scRNA-seq data in Duò et al (2018). Also contains results from applying several clustering methods to each of the data sets, and functions for plotting method performance.
DegCre generates associations between differentially expressed genes (DEGs) and cis-regulatory elements (CREs) based on non-parametric concordance between differential data. The user provides GRanges of DEG TSS and CRE regions with differential p-value and optionally log-fold changes and DegCre returns an annotated Hits object with associations and their calculated probabilities. Additionally, the package provides functionality for visualization and conversion to other formats.
The DNEA R package is the latest implementation of the Differential Network Enrichment Analysis algorithm and is the successor to the Filigree Java-application described in Iyer et al. (2020). The package is designed to take as input an m x n expression matrix for some -omics modality (ie. metabolomics, lipidomics, proteomics, etc.) and jointly estimate the biological network associations of each condition using the DNEA algorithm described in Ma et al. (2019). This approach provides a framework for data-driven enrichment analysis across two experimental conditions that utilizes the underlying correlation structure of the data to determine feature-feature interactions.
Integrated peak and differential caller, specifically designed for broad epigenomic signals.
DifferentialRegulation is a method for detecting differentially regulated genes between two groups of samples (e.g., healthy vs. disease, or treated vs. untreated samples), by targeting differences in the balance of spliced and unspliced mRNA abundances, obtained from single-cell RNA-sequencing (scRNA-seq) data. From a mathematical point of view, DifferentialRegulation accounts for the sample-to-sample variability, and embeds multiple samples in a Bayesian hierarchical model. Furthermore, our method also deals with two major sources of mapping uncertainty: i) ambiguous reads, compatible with both spliced and unspliced versions of a gene, and ii) reads mapping to multiple genes. In particular, ambiguous reads are treated separately from spliced and unsplced reads, while reads that are compatible with multiple genes are allocated to the gene of origin. Parameters are inferred via Markov chain Monte Carlo (MCMC) techniques (Metropolis-within-Gibbs).