Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Get ENCODE data of enhancer region via H3K4me1 peaks and search homolog regions for given sequences. The candidates of enhancer homolog regions can be filtered by distance to target TSS. The top candidates from human and mouse will be aligned to each other and then exported as multiple alignments with given enhancer.
Base-resolution copy number analysis of viral genome. Utilizes base-resolution read depth data over viral genome to find copy number segments with two-dimensional segmentation approach. Provides publish-ready figures, including histograms of read depths, coverage line plots over viral genome annotated with copy number change events and viral genes, and heatmaps showing multiple types of data with integrative clustering of samples.
This package provides a quasi-simulation based approach to performing power analysis for EWAS (Epigenome-wide association studies) with continuous or binary outcomes. EpipwR relies on empirical EWAS datasets to determine power at specific sample sizes while keeping computational cost low. EpipwR can be run with a variety of standard statistical tests, controlling for either a false discovery rate or a family-wise type I error rate.
This package contains functions for reading raw data in ImaGene TXT format obtained from Exiqon miRCURY LNA arrays, annotating them with appropriate GAL files, and normalizing them using a spike-in probe-based method. Other platforms and data formats are also supported.
This package provides objects to manage WebSocket connections to epiviz apps. Other epivizr package use this infrastructure.
An Empirical Bayesian Approach to Differential Co-Expression Analysis at the Gene-Pair Level.
The easylift package provides a convenient tool for genomic liftover operations between different genome assemblies. It seamlessly works with Bioconductor's GRanges objects and chain files from the UCSC Genome Browser, allowing for straightforward handling of genomic ranges across various genome versions. One noteworthy feature of easylift is its integration with the BiocFileCache package. This integration automates the management and caching of chain files necessary for liftover operations. Users no longer need to manually specify chain file paths in their function calls, reducing the complexity of the liftover process.
Base annotation databases for E coli Sakai Strain, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides reference data required for ewce. Expression Weighted Celltype Enrichment (EWCE) is used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.
Genomic coordinates of problematic genomic regions that should be avoided when working with genomic data. GRanges of exclusion regions (formerly known as blacklisted), centromeres, telomeres, known heterochromatin regions, etc. (UCSC gap table data). Primarily for human and mouse genomes, hg19/hg38 and mm9/mm10 genome assemblies.
The epistack package main objective is the visualizations of stacks of genomic tracks (such as, but not restricted to, ChIP-seq, ATAC-seq, DNA methyation or genomic conservation data) centered at genomic regions of interest. epistack needs three different inputs: 1) a genomic score objects, such as ChIP-seq coverage or DNA methylation values, provided as a `GRanges` (easily obtained from `bigwig` or `bam` files). 2) a list of feature of interest, such as peaks or transcription start sites, provided as a `GRanges` (easily obtained from `gtf` or `bed` files). 3) a score to sort the features, such as peak height or gene expression value.
EpiMix is a comprehensive tool for the integrative analysis of high-throughput DNA methylation data and gene expression data. EpiMix enables automated data downloading (from TCGA or GEO), preprocessing, methylation modeling, interactive visualization and functional annotation.To identify hypo- or hypermethylated CpG sites across physiological or pathological conditions, EpiMix uses a beta mixture modeling to identify the methylation states of each CpG probe and compares the methylation of the experimental group to the control group.The output from EpiMix is the functional DNA methylation that is predictive of gene expression. EpiMix incorporates specialized algorithms to identify functional DNA methylation at various genetic elements, including proximal cis-regulatory elements of protein-coding genes, distal enhancers, and genes encoding microRNAs and lncRNAs.
Technical performance metrics for differential gene expression experiments using External RNA Controls Consortium (ERCC) spike-in ratio mixtures.
This package enables the visualization of functional enrichment results as network graphs. First the package enables the visualization of enrichment results, in a format corresponding to the one generated by gprofiler2, as a customizable Cytoscape network. In those networks, both gene datasets (GO terms/pathways/protein complexes) and genes associated to the datasets are represented as nodes. While the edges connect each gene to its dataset(s). The package also provides the option to create enrichment maps from functional enrichment results. Enrichment maps enable the visualization of enriched terms into a network with edges connecting overlapping genes.
ELMER is designed to use DNA methylation and gene expression from a large number of samples to infere regulatory element landscape and transcription factor network in primary tissue.
The package implements a series of highly efficient tools to calculate functional properties of networks based on guilt by association methods.
This packages provides a single function, readEDS. This is a low-level utility for reading in Alevin EDS format into R. This function is not designed for end-users but instead the package is predominantly for simplifying package dependency graph for other Bioconductor packages.
This package provides a package containing an environment representing the Ecoli.CDF file.
This package is for searching for datasets in EMBL-EBI Expression Atlas, and downloading them into R for further analysis. Each Expression Atlas dataset is represented as a SimpleList object with one element per platform. Sequencing data is contained in a SummarizedExperiment object, while microarray data is contained in an ExpressionSet or MAList object.
Supporting data for the EpiMix R package. It include: - HM450_lncRNA_probes.rda - HM450_miRNA_probes.rda - EPIC_lncRNA_probes.rda - EPIC_miRNA_probes.rda - EpigenomeMap.rda - LUAD.sample.annotation - TCGA_BatchData - MET.data - mRNA.data - microRNA.data - lncRNA.data - Sample_EpiMixResults_lncRNA - Sample_EpiMixResults_miRNA - Sample_EpiMixResults_Regular - Sample_EpiMixResults_Enhancer - lncRNA expression data of tumors from TCGA that are stored in the ExperimentHub.
Experimental data with Affymetrix E. coli chips, as reported in She-pin Hung, Pierre Baldi, and G. Wesley Hatfield, J. Biol. Chem., Vol. 277, Issue 43, 40309-40323, October 25, 2002.
Brings together annotation resources from the various EuPathDB databases (PlasmoDB, ToxoDB, TriTrypDB, etc.) and makes them available in R using the AnnotationHub framework.
The package includes some statistical outlier detection methods for epimutations detection in DNA methylation data. The methods included in the package are MANOVA, Multivariate linear models, isolation forest, robust mahalanobis distance, quantile and beta. The methods compare a case sample with a suspected disease against a reference panel (composed of healthy individuals) to identify epimutations in the given case sample. It also contains functions to annotate and visualize the identified epimutations.
This package imports the epiviz visualization JavaScript app for genomic data interactive visualization. The epivizrServer package is used to provide a web server running completely within R. This standalone version allows to browse arbitrary genomes through genome annotations provided by Bioconductor packages.