Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Metabarcoding analysis using the DBTC package is implemented here using shiny in an interactive graphical user interface to conduct Metabarcode analyses and visualize and filter results.
Utility functions to be used to analyse datasets obtained from seed germination/emergence assays. Fits several types of seed germination/emergence models, including those reported in Onofri et al. (2018) "Hydrothermal-time-to-event models for seed germination", European Journal of Agronomy, 101, 129-139 <doi:10.1016/j.eja.2018.08.011>. Contains several datasets for practicing.
Distributed Online Mean Tests is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform mean tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Domean ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for mean testing. The philosophy of Domean is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.
Access data sets for demonstrating or testing diagnostic classification models. Simulated data sets can be used to compare estimated model output to true data-generating values. Real data sets can be used to demonstrate real-world applications of diagnostic models.
Estimates the conditional association between an exposure and an outcome given covariates. Three methods are implemented: O-estimation, where a nuisance model for the association between the covariates and the outcome is used; E-estimation where a nuisance model for the association between the covariates and the exposure is used, and doubly robust (DR) estimation where both nuisance models are used. In DR-estimation, the estimates will be consistent when at least one of the nuisance models is correctly specified, not necessarily both. For more information, see Zetterqvist and Sjölander (2015) <doi:10.1515/em-2014-0021>.
Concept drift refers to the change in the data distribution or in the relationships between variables over time. drifter calculates distances between variable distributions or variable relations and identifies both types of drift. Key functions are: calculate_covariate_drift() checks distance between corresponding variables in two datasets, calculate_residuals_drift() checks distance between residual distributions for two models, calculate_model_drift() checks distance between partial dependency profiles for two models, check_drift() executes all checks against drift. drifter is a part of the DrWhy.AI universe (Biecek 2018) <arXiv:1806.08915>.
Designed for network analysis, leveraging the personalized PageRank algorithm to calculate node scores in a given graph. This innovative approach allows users to uncover the importance of nodes based on a customized perspective, making it particularly useful in fields like bioinformatics, social network analysis, and more.
Modeling the zero coupon yield curve using the dynamic De Rezende and Ferreira (2011) <doi:10.1002/for.1256> five factor model with variable or fixed decaying parameters. For explanatory purposes, the package also includes various short datasets of interest rates for the BRICS countries.
Bayesian inference algorithms based on the population-based "differential evolution" (DE) algorithm. Users can obtain posterior mode (MAP) estimates via DEMAP, posterior samples via DEMCMC, and variational approximations via DEVI.
Calculates the desparsified lasso as originally introduced in van de Geer et al. (2014) <doi:10.1214/14-AOS1221>, and provides inference suitable for high-dimensional time series, based on the long run covariance estimator in Adamek et al. (2020) <doi:10.48550/arXiv.2007.10952>. Also estimates high-dimensional local projections by the desparsified lasso, as described in Adamek et al. (2022) <doi:10.48550/arXiv.2209.03218>.
The state-of-the-art algorithms for distance metric learning, including global and local methods such as Relevant Component Analysis, Discriminative Component Analysis, Local Fisher Discriminant Analysis, etc. These distance metric learning methods are widely applied in feature extraction, dimensionality reduction, clustering, classification, information retrieval, and computer vision problems.
Edit and validate taxonomic data in compliance with Darwin Core standards (Darwin Core Taxon class <https://dwc.tdwg.org/terms/#taxon>).
We provide 70 data sets of females of reproductive age from 19 Asian countries, ranging in age from 15 to 49. The data sets are extracted from demographic and health surveys that were conducted over an extended period of time. Moreover, the functions also provide Whippleâ s index as well as age reporting quality such as very rough, rough, approximate, accurate, and highly accurate.
Templates and data files to support "Discrete Choice Analysis with R", Páez, A. and Boisjoly, G. (2023) <doi:10.1007/978-3-031-20719-8>.
This package provides a collection of functions for calculating the M2 model fit statistic for diagnostic classification models as described by Liu et al. (2016) <DOI:10.3102/1076998615621293>. These functions provide multiple sources of information for model fit according to the M2 statistic, including the M2 statistic, the *p* value for that M2 statistic, and the Root Mean Square Error of Approximation based on the M2 statistic.
Given a set of predictive quantiles from a distribution, estimate the distribution and create `d`, `p`, `q`, and `r` functions to evaluate its density function, distribution function, and quantile function, and generate random samples. On the interior of the provided quantiles, an interpolation method such as a monotonic cubic spline is used; the tails are approximated by a location-scale family.
Seasonal- and calendar adjustment of time series with daily frequency using the DSA approach developed by Ollech, Daniel (2018): Seasonal adjustment of daily time series. Bundesbank Discussion Paper 41/2018.
Calculate multiple biotic indices using diatoms from environmental samples. Diatom species are recognized by their species name using a heuristic search, and their ecological data is retrieved from multiple sources. It includes number/shape of chloroplasts diversity indices, size classes, ecological guilds, and multiple biotic indices. It outputs both a dataframe with all the results and plots of all the obtained data in a defined output folder. - Sample data was taken from Nicolosi Gelis, Cochero & Gómez (2020, <doi:10.1016/j.ecolind.2019.105951>). - The package uses the Diat.Barcode database to calculate morphological and ecological information by Rimet & Couchez (2012, <doi:10.1051/kmae/2012018>),and the combined classification of guilds and size classes established by B-Béres et al. (2017, <doi:10.1016/j.ecolind.2017.07.007>). - Current diatom-based biotic indices include the DES index by Descy (1979) - EPID index by Dell'Uomo (1996, ISBN: 3950009002) - IDAP index by Prygiel & Coste (1993, <doi:10.1007/BF00028033>) - ID-CH index by Hürlimann & Niederhauser (2007) - IDP index by Gómez & Licursi (2001, <doi:10.1023/A:1011415209445>) - ILM index by Leclercq & Maquet (1987) - IPS index by Coste (1982) - LOBO index by Lobo, Callegaro, & Bender (2002, ISBN:9788585869908) - SLA by SládeÄ ek (1986, <doi:10.1002/aheh.19860140519>) - TDI index by Kelly, & Whitton (1995, <doi:10.1007/BF00003802>) - SPEAR(herbicide) index by Wood, Mitrovic, Lim, Warne, Dunlop, & Kefford (2019, <doi:10.1016/j.ecolind.2018.12.035>) - PBIDW index by Castro-Roa & Pinilla-Agudelo (2014) - DISP index by Stenger-Kovács et al. (2018, <doi:10.1016/j.ecolind.2018.07.026>) - EDI index by Chamorro et al. (2024, <doi:10.1021/acsestwater.4c00126>) - DDI index by à lvarez-Blanco et al. (2013, <doi: 10.1007/s10661-012-2607-z>) - PDISE index by Kahlert et al. (2023, <doi:10.1007/s10661-023-11378-4>).
This package provides a tool for manipulating data using the generic formula. A single formula allows to easily add, replace and remove variables before running the analysis.
Mixed model analysis for quantitative genetics with multi-trait responses and pedigree-based partitioning of individual variation into a range of environmental and genetic variance components for individual and maternal effects. Method documented in dmmOverview.pdf; dmm is an implementation of dispersion mean model described by Searle et al. (1992) "Variance Components", Wiley, NY. Dmm() can do MINQUE', bias-corrected-ML', and REML variance and covariance component estimates.
This package provides a Bayesian clustering method for replicated time series or replicated measurements from multiple experimental conditions, e.g., time-course gene expression data. It estimates the number of clusters directly from the data using a Dirichlet-process prior. See Fu, A. Q., Russell, S., Bray, S. and Tavare, S. (2013) Bayesian clustering of replicated time-course gene expression data with weak signals. The Annals of Applied Statistics. 7(3) 1334-1361. <doi:10.1214/13-AOAS650>.
It is a novel tool used to identify the candidate drugs against a particular disease based on the drug target set enrichment analysis. It assumes the most effective drugs are those with a closer affinity in the protein-protein interaction network to the specified disease. (See Gómez-Carballa et al. (2022) <doi: 10.1016/j.envres.2022.112890> and Feng et al. (2022) <doi: 10.7150/ijms.67815> for disease expression profiles; see Wishart et al. (2018) <doi: 10.1093/nar/gkx1037> and Gaulton et al. (2017) <doi: 10.1093/nar/gkw1074> for drug target information; see Kanehisa et al. (2021) <doi: 10.1093/nar/gkaa970> for the details of KEGG database.).
This package provides a collection of functions to estimate parameters of a diffusion model via a D*M analysis. Build in models are: the Ratcliff diffusion model, the RWiener diffusion model, and Linear Ballistic Accumulator models. Custom models functions can be specified as long as they have a density function.
Loads behavioural data from the widely used Drosophila Activity Monitor System (DAMS, TriKinetics <https://trikinetics.com/>) into the rethomics framework.