Measures niche breadth and overlap of microbial taxa from large matrices. Niche breadth measurements include Levins niche breadth (Bn) index, Hurlbert's Bn and Feinsinger's proportional similarity (PS) index. (Feinsinger, P., Spears, E.E., Poole, R.W. (1981) <doi:10.2307/1936664>). Niche overlap measurements include Levin's Overlap (Ludwig, J.A. and Reynolds, J.F. (1988, ISBN:0471832359)) and a Jaccard similarity index of Feinsinger's PS values between taxa pairs, as Proportional Overlap.
The function missForest
in this package is used to impute missing values, particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data, including complex interactions and non-linear relations. It yields an OOB imputation error estimate without the need of a test set or elaborate cross- validation. It can be run in parallel to save computation time.
Citrus is a computational technique developed for the analysis of high dimensional cytometry data sets. This package extracts, statistically analyzes, and visualizes marker expression from citrus data. This code was used to generate data for Figures 3 and 4 in the forthcoming manuscript: Throm et al. â Identification of Enhanced Interferon-Gamma Signaling in Polyarticular Juvenile Idiopathic Arthritis with Mass Cytometryâ , JCI-Insight. For more information on Citrus, please see: Bruggner et al. (2014) <doi:10.1073/pnas.1408792111>. To download the citrus package, please see <https://github.com/nolanlab/citrus>.
This is the very popular mine sweeper game! The game requires you to find out tiles that contain mines through clues from unmasking neighboring tiles. Each tile that does not contain a mine shows the number of mines in its adjacent tiles. If you unmask all tiles that do not contain mines, you win the game; if you unmask any tile that contains a mine, you lose the game. For further game instructions, please run `help(run_game)` and check details. This game runs in X11-compatible devices with `grDevices::x11()
`.
It can be used to create/encode molecular "license-plates" from sequences and to also decode the "license-plates" back to sequences. While initially created for transfer RNA-derived small fragments (tRFs
), this tool can be used for any genomic sequences including but not limited to: tRFs
, microRNAs
, etc. The detailed information can reference to Pliatsika V, Loher P, Telonis AG, Rigoutsos I (2016) <doi:10.1093/bioinformatics/btw194>. It can also be used to annotate tRFs
. The detailed information can reference to Loher P, Telonis AG, Rigoutsos I (2017) <doi:10.1038/srep41184>.
An open source software package written in R statistical language. It consist in a set of decision making tools to conduct missing person searches. Particularly, it allows computing optimal LR threshold for declaring potential matches in DNA-based database search. More recently mispitools incorporates preliminary investigation data based LRs. Statistical weight of different traces of evidence such as biological sex, age and hair color are presented. For citing mispitools please use the following references: Marsico and Caridi, 2023 <doi:10.1016/j.fsigen.2023.102891> and Marsico, Vigeland et al. 2021 <doi:10.1016/j.fsigen.2021.102519>.
This package provides tools for econometric analysis and economic modelling with the traditional two-input Constant Elasticity of Substitution (CES) function and with nested CES functions with three and four inputs. The econometric estimation can be done by the Kmenta approximation, or non-linear least-squares using various gradient-based or global optimisation algorithms. Some of these algorithms can constrain the parameters to certain ranges, e.g. economically meaningful values. Furthermore, the non-linear least-squares estimation can be combined with a grid-search for the rho-parameter(s). The estimation methods are described in Henningsen et al. (2021) <doi:10.4337/9781788976480.00030>.
This is a package for normalization, testing for differential variability and differential methylation and gene set testing for data from Illumina's Infinium HumanMethylation arrays. The normalization procedure is subset-quantile within-array normalization (SWAN), which allows Infinium I and II type probes on a single array to be normalized together. The test for differential variability is based on an empirical Bayes version of Levene's test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.
Providing tools for microRNA
(miRNA
) text mining. miRetrieve
summarizes miRNA
literature by extracting, counting, and analyzing miRNA
names, thus aiming at gaining biological insights into a large amount of text within a short period of time. To do so, miRetrieve
uses regular expressions to extract miRNAs
and tokenization to identify meaningful miRNA
associations. In addition, miRetrieve
uses the latest miRTarBase
version 8.0 (Hsi-Yuan Huang et al. (2020) "miRTarBase
2020: updates to the experimentally validated microRNAâ target
interaction database" <doi:10.1093/nar/gkz896>) to display field-specific miRNA-mRNA
interactions. The most important functions are available as a Shiny web application under <https://miretrieve.shinyapps.io/miRetrieve/>
.
Alternative implementation of the beautiful MissForest
algorithm used to impute mixed-type data sets by chaining random forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012) <doi:10.1093/bioinformatics/btr597>. Under the hood, it uses the lightning fast random forest package ranger'. Between the iterative model fitting, we offer the option of using predictive mean matching. This firstly avoids imputation with values not already present in the original data (like a value 0.3334 in 0-1 coded variable). Secondly, predictive mean matching tries to raise the variance in the resulting conditional distributions to a realistic level. This would allow, e.g., to do multiple imputation when repeating the call to missRanger()
. Out-of-sample application is supported as well.
In longitudinal studies, the same subjects are measured repeatedly over time, leading to correlations among the repeated measurements. Properly accounting for the intra-cluster correlations in the presence of data heterogeneity and long tailed distributions of the disease phenotype is challenging, especially in the context of high dimensional regressions. In this package, we developed a Bayesian quantile mixed effects model with spike- and -slab priors to dissect important gene - environment interactions under longitudinal genomics studies. An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++'. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University.
This package provides several functions to explore miRNA
sponge (also called ceRNA
or miRNA
decoy) regulation from putative miRNA-target
interactions or/and transcriptomics data (including bulk, single-cell and spatial gene expression data). It provides eight popular methods for identifying miRNA
sponge interactions, and an integrative method to integrate miRNA
sponge interactions from different methods, as well as the functions to validate miRNA
sponge interactions, and infer miRNA
sponge modules, conduct enrichment analysis of miRNA
sponge modules, and conduct survival analysis of miRNA
sponge modules. By using a sample control variable strategy, it provides a function to infer sample-specific miRNA
sponge interactions. In terms of sample-specific miRNA
sponge interactions, it implements three similarity methods to construct sample-sample correlation network.
This package provides the users with the ability to quickly create linked micromap plots for a collection of geographic areas. Linked micromap plots are visualizations of geo-referenced data that link statistical graphics to an organized series of small maps or graphic images. The Help description contains examples of how to use the micromapST
function. Contained in this package are border group datasets to support creating linked micromap plots for the 50 U.S. states and District of Columbia (51 areas), the U. S. 20 Seer Registries, the 105 counties in the state of Kansas, the 62 counties of New York, the 24 counties of Maryland, the 29 counties of Utah, the 32 administrative areas in China, the 218 administrative areas in the UK and Ireland (for testing only), the 25 districts in the city of Seoul South Korea, and the 52 counties on the Africa continent. A border group dataset contains the boundaries related to the data level areas, a second layer boundaries, a top or third layer boundary, a parameter list of run options, and a cross indexing table between area names, abbreviations, numeric identification and alias matching strings for the specific geographic area. By specifying a border group, the package create linked micromap plots for any geographic region. The user can create and provide their own border group dataset for any area beyond the areas contained within the package with the BuildBorderGroup
function. In April of 2022, it was announced that maptools', rgdal', and rgeos R packages would be retired in middle to end of 2023 and removed from the CRAN libraries. The BuildBorderGroup
function was dependent on these packages. micromapST
functions were not impacted by the retired R packages. Upgrading of BuildBorderGroup
function was completed and released with version 3.0.0 on August 10, 2023 using the sf R package. References: Carr and Pickle, Chapman and Hall/CRC, Visualizing Data Patterns with Micromaps, CRC Press, 2010. Pickle, Pearson, and Carr (2015), micromapST
: Exploring and Communicating Geospatial Patterns in US State Data., Journal of Statistical Software, 63(3), 1-25., <https://www.jstatsoft.org/v63/i03/>. Copyrighted 2013, 2014, 2015, 2016, 2022, 2023, 2024, and 2025 by Carr, Pearson and Pickle.
This package holds the database for miRNAtap
.
gene target tabale of miRNA
for human/mouse used for MiRaGE
package.
This package provides a downstream bioinformatics tool to construct and assist curation of microhaplotypes from short read sequences.
The consensus taxonomy for prokaryotes is a set of data-sets for best possible taxonomic classification based on 16S rRNA
sequence data.
This package provides functions and tools for analysing consumer demand with the Almost Ideal Demand System (AIDS) suggested by Deaton and Muellbauer (1980).
66 data sets that were imported using read.table()
where appropriate but more commonly after converting to a csv file for importing via read.csv()
.
This package provides tools for econometric production analysis with the Symmetric Normalized Quadratic (SNQ) profit function, e.g. estimation, imposing convexity in prices, and calculating elasticities and shadow prices.
Single imputation based on the Ensemble Conditional Trees (i.e. Cforest algorithm Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007) <doi:10.1186/1471-2105-8-25>).
Raw amplification data from a large microRNA
mixture / dilution study. These data are used by the miRcomp
package to assess the performance of methods that estimate expression from the amplification curves.
This package provides a SummarizedExperiment
object of read counts for microRNAs
across tissues, cell-types, and cancer cell-lines. The read count matrix was prepared and provided by the author of the study: Towards the human cellular microRNAome
.
Play and record games of minesweeper using a graphics device that supports event handling. Replay recorded games and save GIF animations of them. Based on classic minesweeper as detailed by Crow P. (1997) <https://minesweepergame.com/math/a-mathematical-introduction-to-the-game-of-minesweeper-1997.pdf>.