The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
An efficient tool designed for differential analysis of large-scale RNA sequencing (RNAseq) data and Bisulfite sequencing (BSseq) data in the presence of individual relatedness and population structure. PQLseq first fits a Generalized Linear Mixed Model (GLMM) with adjusted covariates, predictor of interest and random effects to account for population structure and individual relatedness, and then performs Wald tests for each gene in RNAseq or site in BSseq.
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.
This package provides functions for interacting directly with the Quandl API to offer data in a number of formats usable in R, downloading a zip with all data from a Quandl database, and the ability to search. This R package uses the Quandl API. For more information go to <https://docs.quandl.com>. For more help on the package itself go to <https://www.quandl.com/tools/r>.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. AbseqR empowers the users of abseqPy with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output.
This package is focused on finding differential exon usage using RNA-seq exon counts between samples with different experimental designs. It provides functions that allows the user to make the necessary statistical tests based on a model that uses the negative binomial distribution to estimate the variance between biological replicates and generalized linear models for testing. The package also provides functions for the visualization and exploration of the results.
This package includes functions and reference data to generate and manipulate log-ratios (also known as log size index (LSI) values) from measurements obtained on zooarchaeological material. Log ratios are used to compare the relative (rather than the absolute) dimensions of animals from archaeological contexts. The zoolog package is also able to seamlessly integrate data and references with heterogeneous nomenclature, which is internally managed by a zoolog thesaurus.
Bayesian inference using the no-U-turn (NUTS) algorithm by Hoffman and Gelman (2014) <https://www.jmlr.org/papers/v15/hoffman14a.html>. Designed for AD Model Builder ('ADMB') models, or when R functions for log-density and log-density gradient are available, such as Template Model Builder models and other special cases. Functionality is similar to Stan', and the rstan and shinystan packages are used for diagnostics and inference.
Offers a set of functions to easily make predictions for univariate time series. autoTS is a wrapper of existing functions of the forecast and prophet packages, harmonising their outputs in tidy dataframes and using default values for each. The core function getBestModel() allows the user to effortlessly benchmark seven algorithms along with a bagged estimator to identify which one performs the best for a given time series.
Analyzes longitudinal Electronic Health Record (EHR) data with possibly informative observational time. These methods are grouped into two classes depending on the inferential task. One group focuses on estimating the effect of an exposure on a longitudinal biomarker while the other group assesses the impact of a longitudinal biomarker on time-to-diagnosis outcomes. The accompanying paper is Du et al (2024) <doi:10.48550/arXiv.2410.13113>.
Fits a Causal Effect Random Forest of Interaction Tress (CERFIT) which is a modification of the Random Forest algorithm where each split is chosen to maximize subgroup treatment heterogeneity. Doing this allows it to estimate the individualized treatment effect for each observation in either randomized controlled trial (RCT) or observational data. For more information see L. Li, R. A. Levine, and J. Fan (2022) <doi:10.1002/sta4.457>.
This package provides models to fit the dynamics of a regulated system experiencing exogenous inputs. The underlying models use differential equations and linear mixed-effects regressions to estimate the coefficients of the equation. With them, the functions can provide an estimated signal. The package provides simulation and analysis functions and also print, summary, plot and predict methods, adapted to the function outputs, for easy implementation and presentation of results.
This package provides a computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices. The algorithm is applicable to continuous, binary, and survival traits and is implemented using the existing single-kernel analysis software SKAT and coxKM'. coxKM can be obtained from <https://github.com/lin-lab/coxKM>.
Fuzzy inference systems are based on fuzzy rules, which have a good capability for managing progressive phenomenons. This package is a basic implementation of the main functions to use a Fuzzy Inference System (FIS) provided by the open source software FisPro <https://www.fispro.org>. FisPro allows to create fuzzy inference systems and to use them for reasoning purposes, especially for simulating a physical or biological system.
Offers a generalization of the scatterplot matrix based on the recognition that most datasets include both categorical and quantitative information. Traditional grids of scatterplots often obscure important features of the data when one or more variables are categorical but coded as numerical. The generalized pairs plot offers a range of displays of paired combinations of categorical and quantitative variables. Emerson et al. (2013) <DOI:10.1080/10618600.2012.694762>.
This package provides functions which make using the Generalized Regression Estimator(GREG) J.N.K. Rao, Isabel Molina, (2015) <doi:10.3390/f11020244> and the Generalized Regression Estimator Operating on Resolutions of Y (GREGORY) easier. The functions are designed to work well within a forestry context, and estimate multiple estimation units at once. Compared to other survey estimation packages, this function has greater flexibility when describing the linear model.
This package provides a Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.
This package provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) "A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series." Journal of the Royal Statistical Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.
The current version of the MixSAL package allows users to generate data from a multivariate SAL distribution or a mixture of multivariate SAL distributions, evaluate the probability density function of a multivariate SAL distribution or a mixture of multivariate SAL distributions, and fit a mixture of multivariate SAL distributions using the Expectation-Maximization (EM) algorithm (see Franczak et. al, 2014, <doi:10.1109/TPAMI.2013.216>, for details).
This package provides functionality for estimating cross-sectional network structures representing partial correlations in R, while accounting for missing values in the data. Networks are estimated via neighborhood selection, i.e., node-wise multiple regression, with model selection guided by information criteria. Missing data can be handled primarily via multiple imputation or a maximum likelihood-based approach; deletion techniques are available but secondary <doi:10.31234/osf.io/qpj35>.
Infer system functioning with empirical NETwork COMparisons. These methods are part of a growing paradigm in network science that uses relative comparisons of networks to infer mechanistic classifications and predict systemic interventions. They have been developed and applied in Langendorf and Burgess (2021) <doi:10.1038/s41598-021-99251-7>, Langendorf (2020) <doi:10.1201/9781351190831-6>, and Langendorf and Goldberg (2019) <doi:10.48550/arXiv.1912.12551>.
Fast functions implemented in C++ via Rcpp to support the NeuroAnatomy Toolbox ('nat') ecosystem. These functions provide large speed-ups for basic manipulation of neuronal skeletons over pure R functions found in the nat package. The expectation is that end users will not use this package directly, but instead the nat package will automatically use routines from this package when it is available to enable large performance gains.