Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the model-free multiscale idealisation approaches: Jump-Segmentation by MUltiResolution Filter (JSMURF), Hotz et al. (2013) <doi:10.1109/TNB.2013.2284063>, JUmp Local dEconvolution Segmentation filter (JULES), Pein et al. (2018) <doi:10.1109/TNB.2018.2845126>, and Heterogeneous Idealization by Local testing and DEconvolution (HILDE), Pein et al. (2021) <doi:10.1109/TNB.2020.3031202>. Further details on how to use them are given in the accompanying vignette.
Use the high-precision arithmetic provided by the R package Rmpfr to compute a custom-made Gauss quadrature nodes and weights, with up to 33 nodes, using a moment-based method via moment determinants. Paul Kabaila (2022) <arXiv:2211.04729>.
This package provides iterators for combinations, permutations, subsets, and Cartesian product, which allow one to go through all elements without creating a huge set of all possible values.
An investigative tool designed to help users visualize correlations between variables in their datasets. This package aims to provide an easy and effective way to explore and visualize these correlations, making it easier to interpret and communicate results.
Autosimilarity curves, standardization of spatial extent, dissimilarity indexes that overweight rare species, phylogenetic and functional (pairwise and multisample) dissimilarity indexes and nestedness for phylogenetic, functional and other diversity metrics. The methods for phylogenetic and functional nestedness is described in Melo, Cianciaruso and Almeida-Neto (2014) <doi:10.1111/2041-210X.12185>. This should be a complement to available packages, particularly vegan'.
Estimate, assess, test, and study linear, nonlinear, hierarchical and multigroup structural equation models using composite-based approaches and procedures, including estimation techniques such as partial least squares path modeling (PLS-PM) and its derivatives (PLSc, ordPLSc, robustPLSc), generalized structured component analysis (GSCA), generalized structured component analysis with uniqueness terms (GSCAm), generalized canonical correlation analysis (GCCA), principal component analysis (PCA), factor score regression (FSR) using sum score, regression or Bartlett scores (including bias correction using Croonâ s approach), as well as several tests and typical postestimation procedures (e.g., verify admissibility of the estimates, assess the model fit, test the model fit etc.).
This package provides a simple way to manage application settings by loading configuration values from .env or .ini files. It supports default values, type casting, and environment variable overrides, enabling a clean separation of configuration from code. Ideal for managing credentials, API keys, and deployment-specific settings.
Numerical integration of cause-specific survival curves to arrive at cause-specific cumulative incidence functions, with three usage modes: 1) Convenient API for parametric survival regression followed by competing-risk analysis, 2) API for CFC, accepting user-specified survival functions in R, and 3) Same as 2, but accepting survival functions in C++. For mathematical details and software tutorial, see Mahani and Sharabiani (2019) <DOI:10.18637/jss.v089.i09>.
Various utilities for the complex multivariate Gaussian distribution and complex Gaussian processes.
This package provides functions to simplify the process of preparing event and transaction for cohort analysis.
Flexible framework for coalescent analyses in R. It includes a main function running the MCMC algorithm, auxiliary functions for tree rearrangement, and some functions to compute population genetic parameters. Extended description can be found in Paradis (2020) <doi:10.1201/9780429466700>. For details on the MCMC algorithm, see Kuhner et al. (1995) <doi:10.1093/genetics/140.4.1421> and Drummond et al. (2002) <doi:10.1093/genetics/161.3.1307>.
This package provides functions for cost-sensitive multi-criteria ensemble selection (CSMES) (as described in De bock et al. (2020) <doi:10.1016/j.ejor.2020.01.052>) for cost-sensitive learning under unknown cost conditions.
This package provides tools for measuring the compositionality of signalling systems (in particular the information-theoretic measure due to Spike (2016) <http://hdl.handle.net/1842/25930> and the Mantel test for distance matrix correlation (after Dietz 1983) <doi:10.1093/sysbio/32.1.21>), functions for computing string and meaning distance matrices as well as an implementation of the Page test for monotonicity of ranks (Page 1963) <doi:10.1080/01621459.1963.10500843> with exact p-values up to k = 22.
This package provides a comprehensive set of functions designed for multivariate mean monitoring using the Critical-to-X Control Chart. These functions enable the determination of optimal control limits based on a specified in-control Average Run Length (ARL), the calculation of out-of-control ARL for a given control limit, and post-signal analysis to identify the specific variable responsible for a detected shift in the mean. This suite of tools provides robust support for precise and effective process monitoring and analysis.
Enable the use of Shepherd.js to create tours in Shiny applications.
This package provides interactive command-line menu functionality with single and multiple selection menus, keyboard navigation (arrow keys or vi-style j/k), preselection, and graceful fallback for non-interactive environments. Inspired by tools such as inquirer.js <https://github.com/SBoudrias/Inquirer.js>, pick <https://github.com/aisk/pick>, and survey <https://github.com/AlecAivazis/survey>. Designed to be lightweight and easy to integrate into R packages and scripts.
This package provides a clinical significance analysis can be used to determine if an intervention has a meaningful or practical effect for patients. You provide a tidy data set plus a few more metrics and this package will take care of it to make your results publication ready. Accompanying package to Claus et al. <doi:10.18637/jss.v111.i01>.
Fits convolution-based nonstationary Gaussian process models to point-referenced spatial data. The nonstationary covariance function allows the user to specify the underlying correlation structure and which spatial dependence parameters should be allowed to vary over space: the anisotropy, nugget variance, and process variance. The parameters are estimated via maximum likelihood, using a local likelihood approach. Also provided are functions to fit stationary spatial models for comparison, calculate the Kriging predictor and standard errors, and create various plots to visualize nonstationarity.
Synthesizing joint distributions from marginal densities, focusing on controlling key statistical properties such as correlation for continuous data, mutual information for categorical data, and inducing Simpson's Paradox. Generate datasets with specified correlation structures for continuous variables, adjust mutual information between categorical variables, and manipulate subgroup correlations to intentionally create Simpson's Paradox. Joe (1997) <doi:10.1201/b13150> Sklar (1959) <https://en.wikipedia.org/wiki/Sklar%27s_theorem>.
This package implements the nonparametric moving sum procedure for detecting changes in the joint characteristic function (NP-MOJO) for multiple change point detection in multivariate time series. See McGonigle, E. T., Cho, H. (2025) <doi:10.1093/biomet/asaf024> for description of the NP-MOJO methodology.
This package provides methods and functions to implement a Recommendation System based on Collaborative Filtering Methodology. See Aggarwal (2016) <doi:10.1007/978-3-319-29659-3> for an overview.
Simple interpolation methods designed to be used from C code. Supports constant, linear and spline interpolation. An R wrapper is included but this package is primarily designed to be used from C code using LinkingTo'. The spline calculations are classical cubic interpolation, e.g., Forsythe, Malcolm and Moler (1977) <ISBN: 9780131653320>.
This package provides a set of functions for counterfactual decomposition (cfdecomp). The functions available in this package decompose differences in an outcome attributable to a mediating variable (or sets of mediating variables) between groups based on counterfactual (causal inference) theory. By using Monte Carlo (MC) integration (simulations based on empirical estimates from multivariable models) we provide added flexibility compared to existing (analytical) approaches, at the cost of computational power or time. The added flexibility means that we can decompose difference between groups in any outcome or and with any mediator (any variable type and distribution). See Sudharsanan & Bijlsma (2019) <doi:10.4054/MPIDR-WP-2019-004> for more information.
Clustering method to cluster both effects curves, through quantile regression coefficient modeling, and curves in functional data analysis. Sottile G. and Adelfio G. (2019) <doi:10.1007/s00180-018-0817-8>.