Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Algorithm to handle with optimal subset selection for distributed local principal component analysis. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.
Interface to the python package dgpsi for Gaussian process, deep Gaussian process, and linked deep Gaussian process emulations of computer models and networks using stochastic imputation (SI). The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>. To get started with the package, see <https://mingdeyu.github.io/dgpsi-R/>.
Parses command line arguments and supplies values to scripts. Users can specify names to which parsed inputs are assigned, value types into which inputs are cast, long options or short options, input splitters and callbacks that define how options should be specified and how input values are supplied.
Statistical modelling and forecasting in claims reserving in non-life insurance under the Double Chain Ladder framework by Martinez-Miranda, Nielsen and Verrall (2012).
Represents the content of a directory as an interactive collapsible tree. Offers the possibility to assign a text (e.g., a Readme.txt') to each folder (represented as a clickable node), so that when the user hovers the pointer over a node, the corresponding text is displayed as a tooltip.
Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours. Two such algorithms, provided by the packages RANN <https://cran.r-project.org/package=RANN>, and nabor <https://cran.r-project.org/package=nabor>, are suggested.
Simple computation of spatial statistic functions of distance to characterize the spatial structures of mapped objects, following Marcon, Traissac, Puech, and Lang (2015) <doi:10.18637/jss.v067.c03>. Includes classical functions (Ripley's K and others) and more recent ones used by spatial economists (Duranton and Overman's Kd, Marcon and Puech's M). Relies on spatstat for some core calculation.
Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions.
Statistical methods for DNA mixture analysis. This package is a lite-version of the DNAmixtures package to allow users without a HUGIN software license to experiment with the statistical methodology. While the lite-version aims to provide the full functionality it is noticeably less efficient than the original DNAmixtures package. For details on implementation and methodology see <https://dnamixtures.r-forge.r-project.org/>.
This package provides wrapper of various machine learning models. In applied machine learning, there is a strong belief that we need to strike a balance between interpretability and accuracy. However, in field of the interpretable machine learning, there are more and more new ideas for explaining black-box models, that are implemented in R'. DALEXtra creates DALEX Biecek (2018) <arXiv:1806.08915> explainer for many type of models including those created using python scikit-learn and keras libraries, and java h2o library. Important part of the package is Champion-Challenger analysis and innovative approach to model performance across subsets of test data presented in Funnel Plot.
Detection of runs of homozygosity and of heterozygosity in diploid genomes using two methods: sliding windows (Purcell et al (2007) <doi:10.1086/519795>) and consecutive runs (Marras et al (2015) <doi:10.1111/age.12259>).
This package provides a zero dependency package containing functions to declare labels and missing values, coupled with associated functions to create (weighted) tables of frequencies and various other summary measures. Some of the base functions have been rewritten to make use of the specific information about the missing values, most importantly to distinguish between empty NA and declared NA values. Some functions have similar functionality with the corresponding ones from packages "haven" and "labelled". The aim is to ensure as much compatibility as possible with these packages, while offering an alternative in the objects of class "declared".
Non-normality could greatly distort the meta-analytic results, according to the simulation in Sun and Cheung (2020) <doi: 10.3758/s13428-019-01334-x>. This package aims to detect non-normality for two independent groups with only limited descriptive statistics, including mean, standard deviation, minimum, and maximum.
Allows for export of DiagrammeR Graphviz objects to SVG.
This package contains a function called dmur() which accepts four parameters like possible values, probabilities of the values, selling cost and preparation cost. The dmur() function generates various numeric decision parameters like MEMV (Maximum (optimum) expected monitory value), best choice, EPPI (Expected profit with perfect information), EVPI (Expected value of the perfect information), EOL (Expected opportunity loss), which facilitate effective decision-making.
Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.
Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1996) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
This package provides a comprehensive approach for identifying and estimating change points in multivariate time series through various statistical methods. Implements the multiple change point detection methodology from Ryan & Killick (2023) <doi:10.1080/00401706.2023.2183261> and a novel estimation methodology from Fotopoulos et al. (2023) <doi:10.1007/s00362-023-01495-0> generalized to fit the detection methodologies. Performs both detection and estimation of change points, providing visualization and summary information of the estimation process for each detected change point.
Retrieves code comment decorations for C++ languages of the form \\ [[xyz]]', which are used for automated wrapping of C++ functions.
Regression for a discrete response, where the conditional distribution is modelled via a discrete Weibull distribution.
S4 classes around infrastructure provided by the coda and dclone packages to make package development easy as a breeze with data cloning for hierarchical models.
Statistical methods and related graphical representations for the Desirability of Outcome Ranking (DOOR) methodology. The DOOR is a paradigm for the design, analysis, interpretation of clinical trials and other research studies based on the patient centric benefit risk evaluation. The package provides functions for generating summary statistics from individual level/summary level datasets, conduct DOOR probability-based inference, and visualization of the results. For more details of DOOR methodology, see Hamasaki and Evans (2025) <doi:10.1201/9781003390855>. For more explanation of the statistical methods and the graphics, see the technical document and user manual of the DOOR Shiny apps at <https://methods.bsc.gwu.edu>.
This package provides a domain-specific language for specifying translating recursions into dynamic-programming algorithms. See <https://en.wikipedia.org/wiki/Dynamic_programming> for a description of dynamic programming.
Provide a Dens-based method for estimating functional connection in large scale brain networks using partial correlation.