Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Evaluate bias and precision in method comparison studies. One provides measurements for each method and it takes care of the estimates. Multiple plots to evaluate bias, precision and compare methods.
For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods.
Create vectors with sticky flags for elements that should not be displayed. Numeric vectors have basic subset and arithmetic methods implemented.
Additional documentation, a package vignette and regression tests for package mlt.
Implementation of two tools to merge Hardware Event Monitors (HEMs) from different subexperiments. Hardware Reading and Merging (HRM), which uses order statistics to merge; and MUlti-Correlation HEM (MUCH) which merges using a multivariate normal distribution. The reference paper for HRM is: S. Vilardell, I. Serra, R. Santalla, E. Mezzetti, J. Abella and F. J. Cazorla, "HRM: Merging Hardware Event Monitors for Improved Timing Analysis of Complex MPSoCs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3662-3673, Nov. 2020, <doi:10.1109/TCAD.2020.3013051>. For MUCH: S. Vilardell, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla. 2021. "MUCH: exploiting pairwise hardware event monitor correlations for improved timing analysis of complex MPSoCs". In Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC 21). Association for Computing Machinery. <doi:10.1145/3412841.3441931>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
This package provides a collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. Many of these functions are designed for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D and for rendering matrix expressions and equations in LaTeX.
This package provides a suite of compiled functions calculating rolling mins, means, maxes and other statistics. This package is designed to meet the needs of data processing systems for environmental time series.
Package computes popular and widely used multicollinearity diagnostic measures \doi10.17576/jsm-2019-4809-26 and \doi10.32614/RJ-2016-062. Package also indicates which regressors may be the reason of collinearity among regressors.
Display processing results using the GWR (Geographically Weighted Regression) method, display maps, and show the results of the Mixed GWR (Mixed Geographically Weighted Regression) model which automatically selects global variables based on variability between regions. This function refers to Yasin, & Purhadi. (2012). "Mixed Geographically Weighted Regression Model (Case Study the Percentage of Poor Households in Mojokerto 2008)". European Journal of Scientific Research, 188-196. <https://www.researchgate.net/profile/Hasbi-Yasin-2/publication/289689583_Mixed_geographically_weighted_regression_model_case_study_The_percentage_of_poor_households_in_Mojokerto_2008/links/58e46aa40f7e9bbe9c94d641/Mixed-geographically-weighted-regression-model-case-study-The-percentage-of-poor-households-in-Mojokerto-2008.pdf>.
Monte Carlo simulation is a stochastic method computing trajectories of photons in media. Surface backscattering is performing calculations in semi-infinite media and summarizing photon flux leaving the surface. This simulation is modeling the optical measurement of diffuse reflectance using an incident light beam. The semi-infinite media is considered to have flat surface. Media, typically biological tissue, is described by four optical parameters: absorption coefficient, scattering coefficient, anisotropy factor, refractive index. The media is assumed to be homogeneous. Computational parameters of the simulation include: number of photons, radius of incident light beam, lowest photon energy threshold, intensity profile (halo) radius, spatial resolution of intensity profile. You can find more information and validation in the Open Access paper. Laszlo Baranyai (2020) <doi:10.1016/j.mex.2020.100958>.
Defines colour palettes and themes for Michigan State University (MSU) publications and presentations. Palettes and themes are supported in both base R and ggplot2 graphics, and are intended to provide consistency between those creating documents and presentations.
Functionality for generating and plotting random mazes. The mazes are based on matrices, so can only consist of vertical and horizontal lines along a regular grid. But there is no need to use every possible space, so they can take on many different shapes.
The Moving Epidemic Method, created by T Vega and JE Lozano (2012, 2015) <doi:10.1111/j.1750-2659.2012.00422.x>, <doi:10.1111/irv.12330>, allows the weekly assessment of the epidemic and intensity status to help in routine respiratory infections surveillance in health systems. Allows the comparison of different epidemic indicators, timing and shape with past epidemics and across different regions or countries with different surveillance systems. Also, it gives a measure of the performance of the method in terms of sensitivity and specificity of the alert week. memapp is a web application created in the Shiny framework for the mem R package.
Inspired by pattern matching and enum types in Rust and many functional programming languages, this package offers an updated version of the switch function called Match that accepts atomic values, functions, expressions, and enum variants. Conditions and return expressions are separated by -> and multiple conditions can be associated with the same return expression using |'. Match also includes support for fallthrough'. The package also replicates the Result and Option enums from Rust.
Multiple contrast tests and simultaneous confidence intervals based on normal approximation. With implementations for binomial proportions in a 2xk setting (risk difference and odds ratio), poly-3-adjusted tumour rates, biodiversity indices (multinomial data) and expected values under lognormal assumption. Approximative power calculation for multiple contrast tests of binomial and Gaussian data.
MHCnuggets (<https://github.com/KarchinLab/mhcnuggets>) is a Python tool to predict MHC class I and MHC class II epitopes. This package allows one to call MHCnuggets from R.
The mycobacrvR package contains utilities to provide detailed information for B cell and T cell epitopes for predicted adhesins from various servers such as ABCpred, Bcepred, Bimas, Propred, NetMHC and IEDB. Please refer the URL below to download data files (data_mycobacrvR.zip) used in functions of this package.
This package provides functions and tools for analysing consumer demand with the Almost Ideal Demand System (AIDS) suggested by Deaton and Muellbauer (1980).
Easily import the MI-SUVI data sets. The user can import data sets with full metrics, percentiles, Z-scores, or rankings. Data is available at both the County and Zip Code Tabulation Area (ZCTA) levels. This package also includes a function to import shape files for easy mapping and a function to access the full technical documentation. All data is sourced from the Michigan Department of Health and Human Services.
This package provides a modeltime extension that implements forecast resampling tools that assess time-based model performance and stability for a single time series, panel data, and cross-sectional time series analysis.
Computes the maximum matching for unweighted graph and maximum matching for (un)weighted bipartite graph efficiently.
MedDRA data is used for defining adverse events in clinical studies. You can load and merge the data for use in categorizing the adverse events using this package. The package requires the data licensed from MedDRA <https://www.meddra.org/>.
Extend the functionality of the mclust package for Gaussian finite mixture modeling by including: density estimation for data with bounded support (Scrucca, 2019 <doi:10.1002/bimj.201800174>); modal clustering using MEM (Modal EM) algorithm for Gaussian mixtures (Scrucca, 2021 <doi:10.1002/sam.11527>); entropy estimation via Gaussian mixture modeling (Robin & Scrucca, 2023 <doi:10.1016/j.csda.2022.107582>); Gaussian mixtures modeling of financial log-returns (Scrucca, 2024 <doi:10.3390/e26110907>).
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes (Dombry, Engelke and Oesting, 2016, <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.