Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
ChIP-seq analysis subset from "Conserved nucleosome positioning defines replication origins" (PMID 20351051).
An S4 class for facilitating the automated creation of rmarkdown files inside other packages/software even without knowing rmarkdown language. Best if implemented in functions as "recursive" style programming.
Data from 8 Affymetrix genechips, looking at a 2x2 factorial design (with 2 repeats per level).
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was E\_coli\_probe\_tab.
This package includes the data necessary to run functions and examples in epimutacions package. Collection of DNA methylation data. The package contains 2 datasets: (1) Control ( GEO: GSE104812), (GEO: GSE97362) case samples; and (2) reference panel (GEO: GSE127824). It also contains candidate regions to be epimutations in 450k methylation arrays.
epigraHMM provides a set of tools for the analysis of epigenomic data based on hidden Markov Models. It contains two separate peak callers, one for consensus peaks from biological or technical replicates, and one for differential peaks from multi-replicate multi-condition experiments. In differential peak calling, epigraHMM provides window-specific posterior probabilities associated with every possible combinatorial pattern of read enrichment across conditions.
Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions.
The EMDomics algorithm is used to perform a supervised multi-class analysis to measure the magnitude and statistical significance of observed continuous genomics data between groups. Usually the data will be gene expression values from array-based or sequence-based experiments, but data from other types of experiments can also be analyzed (e.g. copy number variation). Traditional methods like Significance Analysis of Microarrays (SAM) and Linear Models for Microarray Data (LIMMA) use significance tests based on summary statistics (mean and standard deviation) of the distributions. This approach lacks power to identify expression differences between groups that show high levels of intra-group heterogeneity. The Earth Mover's Distance (EMD) algorithm instead computes the "work" needed to transform one distribution into another, thus providing a metric of the overall difference in shape between two distributions. Permutation of sample labels is used to generate q-values for the observed EMD scores. This package also incorporates the Komolgorov-Smirnov (K-S) test and the Cramer von Mises test (CVM), which are both common distribution comparison tests.
Base annotation databases for E coli K12 Strain, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
This package provides a framework and complete preset pipeline for quantification and analysis of ATAC-seq Reads. It covers raw sequencing reads preprocessing (FASTQ files), reads alignment (Rbowtie2), aligned reads file operations (SAM, BAM, and BED files), peak calling (F-seq), genome annotations (Motif, GO, SNP analysis) and quality control report. The package is managed by dataflow graph. It is easy for user to pass variables seamlessly between processes and understand the workflow. Users can process FASTQ files through end-to-end preset pipeline which produces a pretty HTML report for quality control and preliminary statistical results, or customize workflow starting from any intermediate stages with esATAC functions easily and flexibly.
This package implements the Ensemble of Gene Set Enrichment Analyses (EGSEA) method for gene set testing. EGSEA algorithm utilizes the analysis results of twelve prominent GSE algorithms in the literature to calculate collective significance scores for each gene set.
Exposes an annotation databases generated from Ensembl.
16S rRNA gene sequencing data to study changes in the faecal microbiota of 12 volunteers during a human challenge study with ETEC (H10407) and subsequent treatment with ciprofloxacin.
Epialleles are specific DNA methylation patterns that are mitotically and/or meiotically inherited. This package calls and reports cytosine methylation as well as frequencies of hypermethylated epialleles at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. Among other things, this package can also extract and visualise methylation patterns and assess allele specificity of methylation.
The creation of effective visualizations is a fundamental component of data analysis. In biomedical research, new challenges are emerging to visualize multi-dimensional data in a 2D space, but current data visualization tools have limited capabilities. To address this problem, we leverage Gestalt principles to improve the design and interpretability of multi-dimensional data in 2D data visualizations, layering aesthetics to display multiple variables. The proposed visualization can be applied to spatially-resolved transcriptomics data, but also broadly to data visualized in 2D space, such as embedding visualizations. We provide this open source R package escheR, which is built off of the state-of-the-art ggplot2 visualization framework and can be seamlessly integrated into genomics toolboxes and workflows.
The edge package implements methods for carrying out differential expression analyses of genome-wide gene expression studies. Significance testing using the optimal discovery procedure and generalized likelihood ratio tests (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions are available to facilitate the analysis of common study designs, including time course experiments. Other packages such as sva and qvalue are integrated in edge to provide a wide range of tools for gene expression analysis.
This package provides a data.frame containing an extended probe manifest for the Illumina Infinium Methylation v2.0 Kit. Contains the complete manifest from the Illumina-provided EPIC-8v2-0_EA.csv, plus additional probewise information described in Peters et al. (2024).
Calculates differential expression of genes based on exon counts of genes obtained from RNA-seq sequencing data.
Gene regulatory networks model the underlying gene regulation hierarchies that drive gene expression and observed phenotypes. Epiregulon infers TF activity in single cells by constructing a gene regulatory network (regulons). This is achieved through integration of scATAC-seq and scRNA-seq data and incorporation of public bulk TF ChIP-seq data. Links between regulatory elements and their target genes are established by computing correlations between chromatin accessibility and gene expressions.
Serve data from Bioconductor Objects through a WebSocket connection.
Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses.
This package runs the GADGETS method to identify epistatic effects in nuclear family studies. It also provides functions for permutation-based inference and graphical visualization of the results.
The eiR package provides utilities for accelerated structure similarity searching of very large small molecule data sets using an embedding and indexing approach.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was E\_coli\_2\_probe\_tab.