Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bayesian estimation of inverse variance weighted (IVW), Burgess et al. (2013) <doi:10.1002/gepi.21758>, and MR-Egger, Bowden et al. (2015) <doi:10.1093/ije/dyv080>, summary data models for Mendelian randomization analyses.
This package provides tools for systematic comparison of data frames, offering functionality to identify, quantify, and extract differences. Provides functions with user-friendly and interactive console output for immediate analysis, while also offering options to export differences as structured data frames that can be easily integrated into existing workflows.
This package provides a set of functions to calculate solar irradiance and insolation on Mars horizontal and inclined surfaces. Based on NASA Technical Memoranda 102299, 103623, 105216, 106321, and 106700, i.e. the canonical Mars solar radiation papers.
Create an immutable container holding metadata for the purpose of better enabling programming activities and functionality of other packages within the clinical programming workflow.
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.
Analyzing longitudinal clinical data from Electronic Health Records (EHRs) using linear mixed models (LMM) and visualizing the results as networks. It includes functions for fitting LMM, normalizing adjacency matrices, and comparing networks. The package is designed for researchers in clinical and biomedical fields who need to model longitudinal data and explore relationships between variables For more details see Bates et al. (2015) <doi:10.18637/jss.v067.i01>.
Create meta tags for R Markdown HTML documents and Shiny apps for customized social media cards, for accessibility, and quality search engine indexing. metathis currently supports HTML documents created with rmarkdown', shiny', xaringan', pagedown', bookdown', and flexdashboard'.
Correlates variation within the meta-genome to target species phenotype variations in meta-genome with association studies. Follows the pipeline described in Chaston, J.M. et al. (2014) <doi:10.1128/mBio.01631-14>.
Alternative implementation of the beautiful MissForest algorithm used to impute mixed-type data sets by chaining random forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012) <doi:10.1093/bioinformatics/btr597>. Under the hood, it uses the lightning fast random forest package ranger'. Between the iterative model fitting, we offer the option of using predictive mean matching. This firstly avoids imputation with values not already present in the original data (like a value 0.3334 in 0-1 coded variable). Secondly, predictive mean matching tries to raise the variance in the resulting conditional distributions to a realistic level. This would allow, e.g., to do multiple imputation when repeating the call to missRanger(). Out-of-sample application is supported as well.
Comprehensive analytical tools are provided to characterize infectious disease superspreading from contact tracing surveillance data. The underlying theoretical frameworks of this toolkit include branching process with transmission heterogeneity (Lloyd-Smith et al. (2005) <doi:10.1038/nature04153>), case cluster size distribution (Nishiura et al. (2012) <doi:10.1016/j.jtbi.2011.10.039>, Blumberg et al. (2014) <doi:10.1371/journal.ppat.1004452>, and Kucharski and Althaus (2015) <doi:10.2807/1560-7917.ES2015.20.25.21167>), and decomposition of reproduction number (Zhao et al. (2022) <doi:10.1371/journal.pcbi.1010281>).
Two distinct but related statistical approaches to the problem of identifying the combinations of medication error characteristics that are more likely to result in harm are implemented in this package: 1) a Bayesian hierarchical model with optimal Bayesian ranking on the log odds of harm, and 2) an empirical Bayes model that estimates the ratio of the observed count of harm to the count that would be expected if error characteristics and harm were independent. In addition, for the Bayesian hierarchical model, the package provides functions to assess the sensitivity of results to different specifications of the random effects distributions.
This package performs mean shift classification using linear and k-d tree based nearest neighbor implementations for the Gaussian, Epanechnikov, and biweight product kernels.
Toolset that enriches mlr with a diverse set of preprocessing operators. Composable Preprocessing Operators ("CPO"s) are first-class R objects that can be applied to data.frames and mlr "Task"s to modify data, can be attached to mlr "Learner"s to add preprocessing to machine learning algorithms, and can be composed to form preprocessing pipelines.
Turning point method is a method proposed by Choi (1990) <doi:10.2307/2531453> to estimate 50 percent effective dose (ED50) in the study of drug sensitivity. The method has its own advantages for that it can provide robust ED50 estimation. This package contains the modified function of Choi's turning point method.
Automated cell type annotation for single-cell RNA sequencing data using consensus predictions from multiple large language models (LLMs). LLMs are artificial intelligence models trained on vast text corpora to understand and generate human-like text. This package integrates with Seurat objects and provides uncertainty quantification for annotations. Supports various LLM providers including OpenAI', Anthropic', and Google'. The package leverages these models through their respective APIs (Application Programming Interfaces) <https://platform.openai.com/docs>, <https://docs.anthropic.com/>, and <https://ai.google.dev/gemini-api/docs>. For details see Yang et al. (2025) <doi:10.1101/2025.04.10.647852>.
Supplementary materials and datasets for the book "Modern Psychometrics With R" (Mair, 2018, Springer useR! series).
Measures mobility in a population through transition matrices and mobility indices. Relative, mixed, and absolute transition matrices are supported. The Prais-Bibby, Absolute Movement, Origin Specific, and Weighted Group Mobility indices are supported. Example income and grade data are included.
This package provides tools for creating and issuing nicely-formatted text within R diagnostic messages and those messages given during warnings and errors. The formatting of the messages can be customized using templating features. Issues with singular and plural forms can be handled through specialized syntax.
Efficient finite difference method for valuing European and American multi-asset options.
Use the open source MDB Tools utilities <https://github.com/mdbtools/mdbtools/>. Primarily used for converting proprietary Microsoft Access files to simple text files and then reading those as data frames.
This package provides a user-friendly way for the analysis of multinomial processing tree (MPT) models (e.g., Riefer, D. M., and Batchelder, W. H. [1988]. Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339) for single and multiple datasets. The main functions perform model fitting and model selection. Model selection can be done using AIC, BIC, or the Fisher Information Approximation (FIA) a measure based on the Minimum Description Length (MDL) framework. The model and restrictions can be specified in external files or within an R script in an intuitive syntax or using the context-free language for MPTs. The classical .EQN file format for model files is also supported. Besides MPTs, this package can fit a wide variety of other cognitive models such as SDT models (see fit.model). It also supports multicore fitting and FIA calculation (using the snowfall package), can generate or bootstrap data for simulations, and plot predicted versus observed data.
The utility of this package is in simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of MixSim', there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models.
The rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging, which necessitates innovative, integrated, and efficient trial designs(Yuan, Y., et al. (2016) <doi:10.1002/sim.6971>). MIDAS-2 package enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We used a regression model to characterize the efficacy pattern in subgroups. Information borrowing was applied through Bayesian hierarchical model to improve trial efficiency considering the limited sample size in subgroups(Cunanan, K. M., et al. (2019) <doi:10.1177/1740774518812779>). MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion(Wathen, J. K., & Thall, P. F. (2017) <doi: 10.1177/1740774517692302>).
Three generalizations of the synthetic control method (which has already an implementation in package Synth') are implemented: first, MSCMT allows for using multiple outcome variables, second, time series can be supplied as economic predictors, and third, a well-defined cross-validation approach can be used. Much effort has been taken to make the implementation as stable as possible (including edge cases) without losing computational efficiency. A detailed description of the main algorithms is given in Becker and Klöà ner (2018) <doi:10.1016/j.ecosta.2017.08.002>.