Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of unknown historical or archaeological dates subject to relationships with other relative dates and absolute constraints, derived as marginal densities from the full joint conditional, using a two-stage Gibbs sampler with consistent batch means to assess convergence. Features reporting on Monte Carlo standard errors, as well as tools for rule-based estimation of dates of production and use of artifact types, aligning and checking relative sequences, and evaluating the impact of the omission of relative/absolute events upon one another.
Enables launching a series of simulations of a computer code from the R session, and to retrieve the simulation outputs in an appropriate format for post-processing treatments. Five sequential sampling schemes and three coupled-to-MCMC schemes are implemented.
Comparative analysis of continuous traits influencing discrete states, and utility tools to facilitate comparative analyses. Implementations of ABBA/BABA type statistics to test for introgression in genomic data. Wright-Fisher, phylogenetic tree, and statistical distribution Shiny interactive simulations for use in teaching.
This package provides tools to analyze the embryo growth and the sexualisation thermal reaction norms. See <doi:10.7717/peerj.8451> for tsd functions; see <doi:10.1016/j.jtherbio.2014.08.005> for thermal reaction norm of embryo growth.
If translate English or Chinese sentence, there is a faster way for R user. You can pass in an English or Chinese sentence, ecce package support both English and Chinese translation. It also support browse translation results in website. In addition, also support obtain the pinyin of the Chinese character, you can more easily understand the pronunciation of the Chinese character.
Offers a set of functions to easily download and clean Brazilian electoral data from the Superior Electoral Court and CepespData websites. Among other features, the package retrieves data on local and federal elections for all positions (city councilor, mayor, state deputy, federal deputy, governor, and president) aggregated by state, city, and electoral zones.
Implementations of the expected shortfall backtests of Bayer and Dimitriadis (2020) <doi:10.1093/jjfinec/nbaa013> as well as other well known backtests from the literature. Can be used to assess the correctness of forecasts of the expected shortfall risk measure which is e.g. used in the banking and finance industry for quantifying the market risk of investments. A special feature of the backtests of Bayer and Dimitriadis (2020) <doi:10.1093/jjfinec/nbaa013> is that they only require forecasts of the expected shortfall, which is in striking contrast to all other existing backtests, making them particularly attractive for practitioners.
Expert Algorithm Verbal Autopsy assigns causes of death to 2016 WHO Verbal Autopsy Questionnaire data. odk2EAVA() converts data to a standard input format for cause of death determination building on the work of Thomas (2021) <https://cran.r-project.org/src/contrib/Archive/CrossVA/>. codEAVA() uses the presence and absence of signs and symptoms reported in the Verbal Autopsy interview to diagnose common causes of death. A deterministic algorithm assigns a single cause of death to each Verbal Autopsy interview record using a hierarchy of all common causes for neonates or children 1 to 59 months of age.
This package provides a tool which allows users to create and evaluate ensembles of species distribution model (SDM) predictions. Functionality is offered through R functions or a GUI (R Shiny app). This tool can assist users in identifying spatial uncertainties and making informed conservation and management decisions. The package is further described in Woodman et al (2019) <doi:10.1111/2041-210X.13283>.
Collection of functions related to benchmark with prediction models for data analysis and editing of clinical and epidemiological data.
This is a collection of assorted functions and examples collected from various projects. Currently we have functionalities for simplifying overlapping time intervals, Charlson comorbidity score constructors for Danish data, getting frequency for multiple variables, getting standardized output from logistic and log-linear regressions, sibling design linear regression functionalities a method for calculating the confidence intervals for functions of parameters from a GLM, Bayes equivalent for hypothesis testing with asymptotic Bayes factor, and several help functions for generalized random forest analysis using grf'.
Estimating individual-level covariate-outcome associations using aggregate data ("ecological inference") or a combination of aggregate and individual-level data ("hierarchical related regression").
Construct the admissible exact intervals for the binomial proportion, the Poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided intervals are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) <doi:10.5705/ss.2012.257> and Wang (2015) <doi:10.1111/biom.12360>.
For multiscale analysis, this package carries out empirical mode decomposition and Hilbert spectral analysis. For usage of EMD, see Kim and Oh, 2009 (Kim, D and Oh, H.-S. (2009) EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum, The R Journal, 1, 40-46).
This package provides a shiny-based front end (the ExPanD app) and a set of functions for exploratory data analysis. Run as a web-based app, ExPanD enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of ExPanD and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use ExPanD and/or the functions of this package.
Exploitation, processing and 2D-3D visualization of DICOM-RT files (structures, dosimetry, imagery) for medical physics and clinical research, in a patient-oriented perspective.
Description: Application of empirical mode decomposition based support vector regression model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <http://krishi.icar.gov.in/jspui/handle/123456789/44873>; (ii) Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/43174>; (iii) Das (2023) <http://krishi.icar.gov.in/jspui/handle/123456789/77772>.
Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about errors is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see citation("errors") for details.
Fit, plot and compare several (extreme value) distribution functions. Compute (truncated) distribution quantile estimates and plot return periods on a linear scale. On the fitting method, see Asquith (2011): Distributional Analysis with L-moment Statistics [...] ISBN 1463508417.
The main functions are emmreml', and emmremlMultiKernel'. emmreml solves a mixed model with known covariance structure using the EMMA algorithm. emmremlMultiKernel is a wrapper for emmreml to handle multiple random components with known covariance structures. The function emmremlMultivariate solves a multivariate gaussian mixed model with known covariance structure using the ECM algorithm.
This package provides a collection of advanced tools, methods and models specifically designed for analyzing different types of ecological networks - especially antagonistic (food webs, host-parasite), mutualistic (plant-pollinator, plant-fungus, etc) and competitive networks, as well as their variability in time and space. Statistical models are developed to describe and understand the mechanisms that determine species interactions, and to decipher the organization of these ecological networks (Ohlmann et al. (2019) <doi:10.1111/ele.13221>, Gonzalez et al. (2020) <doi:10.1101/2020.04.02.021691>, Miele et al. (2021) <doi:10.48550/arXiv.2103.10433>, Botella et al (2021) <doi:10.1111/2041-210X.13738>).
Calculates the (approximate) effective number of clusters for a regression model, as described in Carter, Schnepel, and Steigerwald (2017) <doi:10.1162/REST_a_00639>. The effective number of clusters is a statistic to assess the reliability of asymptotic inference when sampling or treatment assignment is clustered. Methods are implemented for stats::lm(), plm::plm(), and fixest::feols(). There is also a formula method.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
Analytical methods to locate and characterise ecotones, ecosystems and environmental patchiness along ecological gradients. Methods are implemented for isolated sampling or for space/time series. It includes Detrended Correspondence Analysis (Hill & Gauch (1980) <doi:10.1007/BF00048870>), fuzzy clustering (De Cáceres et al. (2010) <doi:10.1080/01621459.1963.10500845>), biodiversity indices (Jost (2006) <doi:10.1111/j.2006.0030-1299.14714.x>), and network analyses (Epskamp et al. (2012) <doi:10.18637/jss.v048.i04>) - as well as tools to explore the number of clusters in the data. Functions to produce synthetic ecological datasets are also provided.