Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package for data exploration and result presentation. Full epicalc package with data management functions is available at <https://medipe.psu.ac.th/epicalc/>'.
Calculates conditional exact tests (Fisher's exact test, Blaker's exact test, or exact McNemar's test) and unconditional exact tests (including score-based tests on differences in proportions, ratios of proportions, and odds ratios, and Boshcloo's test) with appropriate matching confidence intervals, and provides power and sample size calculations. Gives melded confidence intervals for the binomial case (Fay, et al, 2015, <DOI:10.1111/biom.12231>). Gives boundary-optimized rejection region test (Gabriel, et al, 2018, <DOI:10.1002/sim.7579>), an unconditional exact test for the situation where the controls are all expected to fail. Gives confidence intervals compatible with exact McNemar's or sign tests (Fay and Lumbard, 2021, <DOI:10.1002/sim.8829>). For review of these kinds of exact tests see Fay and Hunsberger (2021, <DOI:10.1214/21-SS131>).
Extends the Changes-in-Changes model a la Athey and Imbens (2006) <doi:10.1111/j.1468-0262.2006.00668.x> to multiple cohorts and time periods, which generalizes difference-in-differences estimation techniques to the entire distribution. Computes quantile treatment effects for every possible two-by-two combination in ecic(). Then, aggregating all bootstrap runs adds the standard errors in summary_ecic(). Results can be plotted with plot_ecic() aggregated over all cohort-group combinations or in an event-study style for either individual periods or individual quantiles.
Data for use with the Sage Introduction to Exponential Random Graph Modeling text by Jenine K. Harris. Network data set consists of 1283 local health departments and the communication links among them along with several attributes.
This package provides a tool that allows users to generate various indices for evaluating statistical models. The fitstat() function computes indices based on the fitting data. The valstat() function computes indices based on the validation data set. Both fitstat() and valstat() will return 16 indices SSR: residual sum of squares, TRE: total relative error, Bias: mean bias, MRB: mean relative bias, MAB: mean absolute bias, MAPE: mean absolute percentage error, MSE: mean squared error, RMSE: root mean square error, Percent.RMSE: percentage root mean squared error, R2: coefficient of determination, R2adj: adjusted coefficient of determination, APC: Amemiya's prediction criterion, logL: Log-likelihood, AIC: Akaike information criterion, AICc: corrected Akaike information criterion, BIC: Bayesian information criterion, HQC: Hannan-Quin information criterion. The lower the better for the SSR, TRE, Bias, MRB, MAB, MAPE, MSE, RMSE, Percent.RMSE, APC, AIC, AICc, BIC and HQC indices. The higher the better for R2 and R2adj indices. Petre Stoica, P., Selén, Y. (2004) <doi:10.1109/MSP.2004.1311138>\n Zhou et al. (2023) <doi:10.3389/fpls.2023.1186250>\n Ogana, F.N., Ercanli, I. (2021) <doi:10.1007/s11676-021-01373-1>\n Musabbikhah et al. (2019) <doi:10.1088/1742-6596/1175/1/012270>.
This package provides tools to fit Mixture Cure Rate models via the Expectation-Maximization (EM) algorithm, allowing for flexible link functions in the cure component and various survival distributions in the latency part. The package supports user-specified link functions, includes methods for parameter estimation and model diagnostics, and provides residual analysis tailored for cure models. The classical theory methods used are described in Berkson, J. and Gage, R. P. (1952) <doi:10.2307/2281318>, Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) <https://www.jstor.org/stable/2984875>, Bazán, J., Torres-Avilés, F., Suzuki, A. and Louzada, F. (2017)<doi:10.1002/asmb.2215>.
This package provides data sets and R Codes for E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement, CSIRO Publishing.
This package implements the Ebrahim-Farrington goodness-of-fit test for logistic regression models, particularly effective for sparse data and binary outcomes. This test provides an improved alternative to the traditional Hosmer-Lemeshow test by using a modified Pearson chi-square statistic with data-dependent grouping. The test is based on Farrington (1996) theoretical framework but simplified for practical implementation with binary data. Includes functions for both the original Farrington test (for grouped data) and the new Ebrahim-Farrington test (for binary data with automatic grouping). For more details see Hosmer (1980) <doi:10.1080/03610928008827941> and Farrington (1996) <doi:10.1111/j.2517-6161.1996.tb02086.x>.
This package provides various statistical methods for evaluating Individualized Treatment Rules under randomized data. The provided metrics include Population Average Value (PAV), Population Average Prescription Effect (PAPE), Area Under Prescription Effect Curve (AUPEC). It also provides the tools to analyze Individualized Treatment Rules under budget constraints. Detailed reference in Imai and Li (2019) <arXiv:1905.05389>.
Computes a series of indices commonly used in the fields of economic geography, economic complexity, and evolutionary economics to describe the location, distribution, spatial organization, structure, and complexity of economic activities. Functions include basic spatial indicators such as the location quotient, the Krugman specialization index, the Herfindahl or the Shannon entropy indices but also more advanced functions to compute different forms of normalized relatedness between economic activities or network-based measures of economic complexity. Most of the functions use matrix calculus and are based on bipartite (incidence) matrices consisting of region - industry pairs. These are described in Balland (2017) <http://econ.geo.uu.nl/peeg/peeg1709.pdf>.
Fit and sample from the ensemble model described in Spence et al (2018): "A general framework for combining ecosystem models"<doi:10.1111/faf.12310>.
Predicts enrollment and events assumed enrollment and treatment-specific time-to-event models, and calculates test statistics for time-to-event data with cured population based on the simulation.Methods for prediction event in the existence of cured population are as described in : Chen, Tai-Tsang(2016) <doi:10.1186/s12874-016-0117-3>.
This package provides various tools for preprocessing Emission-Excitation-Matrix (EEM) for Parallel Factor Analysis (PARAFAC). Different methods are also provided to calculate common metrics such as humification index and fluorescence index.
This package contains utilities for the analysis of protein sequences in a phylogenetic context. Allows the generation of phylogenetic trees base on protein sequences in an alignment-independent way. Two different methods have been implemented. One approach is based on the frequency analysis of n-grams, previously described in Stuart et al. (2002) <doi:10.1093/bioinformatics/18.1.100>. The other approach is based on the species-specific neighborhood preference around amino acids. Features include the conversion of a protein set into a vector reflecting these neighborhood preferences, pairwise distances (dissimilarity) between these vectors, and the generation of trees based on these distance matrices.
Bindings to edlib, a lightweight performant C/C++ library for exact pairwise sequence alignment using edit distance (Levenshtein distance). The algorithm computes the optimal alignment path, but also can be used to find only the start and/or end of the alignment path for convenience. Edlib was designed to be ultrafast and require little memory, with the capability to handle very large sequences. Three alignment methods are supported: global (Needleman-Wunsch), infix (Hybrid Wunsch), and prefix (Semi-Hybrid Wunsch). The original C/C++ library is described in "Edlib: a C/C++ library for fast, exact sequence alignment using edit distance", M. Å oÅ¡iÄ , M. Å ikiÄ , <doi:10.1093/bioinformatics/btw753>.
This package provides a set of methods to access and parse live filing information from the U.S. Securities and Exchange Commission (SEC - <https://www.sec.gov/>) including company and fund filings along with all associated metadata.
Randomly generate a wide range of interaction networks with specified size, average degree, modularity, and topological structure. Sample nodes and links from within simulated networks randomly, by degree, by module, or by abundance. Simulations and sampling routines are implemented in FORTRAN', providing efficient generation times even for large networks. Basic visualization methods also included. Algorithms implemented here are described in de Aguiar et al. (2017) <arXiv:1708.01242>.
This package provides functions that help with analysis of prognostic study data. This allows users with little experience of developing models to develop models and assess the performance of the prognostic models. This also summarises the information, so the performance of multiple models can be displayed simultaneously. This minor update fixes issues related to memory requirements with large number of simulations and deals with situations when there is overfitting of data. Gurusamy, K (2026)<https://github.com/kurinchi2k/EQUALPrognosis>.
Computes temporal trends in environmental suitability obtained from ecological niche models, based on a set of species presence point coordinates and predictor variables.
This package provides a flexible tool for enrichment analysis based on user-defined sets. It allows users to perform over-representation analysis of the custom sets among any specified ranked feature list, hence making enrichment analysis applicable to various types of data from different scientific fields. EnrichIntersect also enables an interactive means to visualize identified associations based on, for example, the mix-lasso model (Zhao et al., 2022 <doi:10.1016/j.isci.2022.104767>) or similar methods.
The US EPA ECOTOX database is a freely available database with a treasure of aquatic and terrestrial ecotoxicological data. As the online search interface doesn't come with an API, this package provides the means to easily access and search the database in R. To this end, all raw tables are downloaded from the EPA website and stored in a local SQLite database <doi:10.1016/j.chemosphere.2024.143078>.
An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). ergm is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
This package provides a set of procedures for parametric and non-parametric modelling of the dependence structure of multivariate extreme-values is provided. The statistical inference is performed with non-parametric estimators, likelihood-based estimators and Bayesian techniques. It adapts the methodologies of Beranger and Padoan (2015) <doi:10.48550/arXiv.1508.05561>, Marcon et al. (2016) <doi:10.1214/16-EJS1162>, Marcon et al. (2017) <doi:10.1002/sta4.145>, Marcon et al. (2017) <doi:10.1016/j.jspi.2016.10.004> and Beranger et al. (2021) <doi:10.1007/s10687-019-00364-0>. This package also allows for the modelling of spatial extremes using flexible max-stable processes. It provides simulation algorithms and fitting procedures relying on the Stephenson-Tawn likelihood as per Beranger at al. (2021) <doi:10.1007/s10687-020-00376-1>.
Evidential regression analysis for dichotomous and quantitative outcome data. The following references described the methods in this package: Strug, L. J., Hodge, S. E., Chiang, T., Pal, D. K., Corey, P. N., & Rohde, C. (2010) <doi:10.1038/ejhg.2010.47>. Strug, L. J., & Hodge, S. E. (2006) <doi:10.1159/000094709>. Royall, R. (1997) <ISBN:0-412-04411-0>.