Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Builds on the EMD package to provide additional tools for empirical mode decomposition (EMD) and Hilbert spectral analysis. It also implements the ensemble empirical decomposition (EEMD) and the complete ensemble empirical mode decomposition (CEEMD) methods to avoid mode mixing and intermittency problems found in EMD analysis. The package comes with several plotting methods that can be used to view intrinsic mode functions, the HHT spectrum, and the Fourier spectrum.
This package provides functions for the management and treatment of hydrology and meteorology time-series stored in a Sqlite data base.
Calculates a suite of hydrologic indices for daily time series data that are widely used in hydrology and stream ecology.
In high-dimensional settings: Estimate the number of distant spikes based on the Generalized Spiked Population (GSP) model. Estimate the population eigenvalues, angles between the sample and population eigenvectors, correlations between the sample and population PC scores, and the asymptotic shrinkage factors. Adjust the shrinkage bias in the predicted PC scores. Dey, R. and Lee, S. (2019) <doi:10.1016/j.jmva.2019.02.007>.
Inference of chromosome-length haplotypes using a few haploid gametes of an individual. The gamete genotype data may be generated from various platforms including genotyping arrays and sequencing even with low-coverage. Hapi simply takes genotype data of known hetSNPs in single gamete cells as input and report the high-resolution haplotypes as well as confidence of each phased hetSNPs. The package also includes a module allowing downstream analyses and visualization of identified crossovers in the gametes.
The haversine is a function used to calculate the distance between a pair of latitude and longitude points while accounting for the assumption that the points are on a spherical globe. This package provides a fast, dataframe compatible, haversine function. For the first publication on the haversine calculation see Joseph de Mendoza y RÃ os (1795) <https://books.google.cat/books?id=030t0OqlX2AC> (In Spanish).
This package provides tools for the estimation of Heckman selection models with robust variance-covariance matrices. It includes functions for computing the bread and meat matrices, as well as clustered standard errors for generalized Heckman models, see Fernando de Souza Bastos and Wagner Barreto-Souza and Marc G. Genton (2022, ISSN: <https://www.jstor.org/stable/27164235>). The package also offers cluster-robust inference with sandwich estimators, and tools for handling issues related to eigenvalues in covariance matrices.
Estimates parameters in Mixture Transition Distribution (MTD) models, a class of high-order Markov chains. The set of relevant pasts (lags) is selected using either the Bayesian Information Criterion or the Forward Stepwise and Cut algorithms. Other model parameters (e.g. transition probabilities and oscillations) can be estimated via maximum likelihood estimation or the Expectation-Maximization algorithm. Additionally, hdMTD includes a perfect sampling algorithm that generates samples of an MTD model from its invariant distribution. For theory, see Ost & Takahashi (2023) <http://jmlr.org/papers/v24/22-0266.html>.
Implementation of S4 class of sets and multisets of numbers. The implementation is based on the hash table from the package hash'. Quick operations are allowed when the set is a dynamic object. The implementation is discussed in detail in Ceoldo and Wit (2023) <arXiv:2304.09809>.
Method and tool for generating hybrid time series forecasts using an error remodeling approach. These forecasting approaches utilize a recursive technique for modeling the linearity of the series using a linear method (e.g., ARIMA, Theta, etc.) and then models (forecasts) the residuals of the linear forecaster using non-linear neural networks (e.g., ANN, ARNN, etc.). The hybrid architectures comprise three steps: firstly, the linear patterns of the series are forecasted which are followed by an error re-modeling step, and finally, the forecasts from both the steps are combined to produce the final output. This method additionally provides the confidence intervals as needed. Ten different models can be implemented using this package. This package generates different types of hybrid error correction models for time series forecasting based on the algorithms by Zhang. (2003), Chakraborty et al. (2019), Chakraborty et al. (2020), Bhattacharyya et al. (2021), Chakraborty et al. (2022), and Bhattacharyya et al. (2022) <doi:10.1016/S0925-2312(01)00702-0> <doi:10.1016/j.physa.2019.121266> <doi:10.1016/j.chaos.2020.109850> <doi:10.1109/IJCNN52387.2021.9533747> <doi:10.1007/978-3-030-72834-2_29> <doi:10.1007/s11071-021-07099-3>.
This package provides a set of functions to estimate haziness of an image based on RGB bands. It returns a haze factor, varying from 0 to 1, a metric for fogginess and cloudiness. The package also presents additional functions to estimate brightness, darkness and contrast rasters of the RGB image. This package can be used for several applications such as inference of weather quality data and performing environmental studies from interpreting digital images.
The Hybrid design is a combination of model-assisted design (e.g., the modified Toxicity Probability Interval design) with dose-toxicity model-based design for phase I dose-finding studies. The hybrid design controls the overdosing toxicity well and leads to a recommended dose closer to the true maximum tolerated dose (MTD) due to its ability to calibrate for an intermediate dose. More details can be found in Liao et al. 2022 <doi:10.1002/ijc.34203>.
Perform hierarchical Bayesian Aldrich-McKelvey scaling using Hamiltonian Monte Carlo via Stan'. Aldrich-McKelvey ('AM') scaling is a method for estimating the ideological positions of survey respondents and political actors on a common scale using positional survey data. The hierarchical versions of the Bayesian AM model included in this package outperform other versions both in terms of yielding meaningful posterior distributions for respondent positions and in terms of recovering true respondent positions in simulations. The package contains functions for preparing data, fitting models, extracting estimates, plotting key results, and comparing models using cross-validation. The original version of the default model is described in Bølstad (2024) <doi:10.1017/pan.2023.18>.
Perform statistical writership analysis of scanned handwritten documents with a shiny app for handwriter'.
Facilitates automated HTML report creation, in particular framed HTML pages and dynamically sortable tables.
The hotspots package is designed to look within a set of measured values of a variable and identify values that are disproportionately high based on both the deviance of any given value from a statistical distribution and its similarity to other values. Because this relative magnitude of each value is taken into account, a value that is a statistical outlier may not always be a hot spot if other values are similarly large.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, hpackedbubble package provides a simple way to draw split packed bubble charts.
This package implements various tools for storing and analyzing hypergraphs. Handles basic undirected, unweighted hypergraphs, and various ways of creating hypergraphs from a number of representations, and converting between graphs and hypergraphs.
Using the MDL principle, it is possible to estimate parameters for a histogram-like model. The package contains the implementation of such an estimation method.
Build better balance in causal inference models. halfmoon helps you assess propensity score models for balance between groups using metrics like standardized mean differences and visualization techniques like mirrored histograms. halfmoon supports both weighting and matching techniques.
An open-source R package to deploys reproducible and flexible labels using layers. The huito package is part of the inkaverse project for developing different procedures and tools used in plant science and experimental designs. Learn more about the inkaverse project at <https://inkaverse.com/>.
Construction and analysis of multivalued zero-sum matrix games over the abstract space of probability distributions, which describe the losses in each scenario of defense vs. attack action. The distributions can be compiled directly from expert opinions or other empirical data (insofar available). The package implements the methods put forth in the EU project HyRiM (Hybrid Risk Management for Utility Networks), FP7 EU Project Number 608090. The method has been published in Rass, S., König, S., Schauer, S., 2016. Decisions with Uncertain Consequences-A Total Ordering on Loss-Distributions. PLoS ONE 11, e0168583. <doi:10.1371/journal.pone.0168583>, and applied for advanced persistent thread modeling in Rass, S., König, S., Schauer, S., 2017. Defending Against Advanced Persistent Threats Using Game-Theory. PLoS ONE 12, e0168675. <doi:10.1371/journal.pone.0168675>. A volume covering the wider range of aspects of risk management, partially based on the theory implemented in the package is the book edited by S. Rass and S. Schauer, 2018. Game Theory for Security and Risk Management: From Theory to Practice. Springer, <doi:10.1007/978-3-319-75268-6>, ISBN 978-3-319-75267-9.
Converts among many citation formats, including BibTeX', Citeproc', Codemeta', RDF XML', RIS', Schema.org', and Citation File Format'. A low level R6 class is provided, as well as stand-alone functions for each citation format for both read and write.
An implementation of Random Forest-based two-sample tests as introduced in Hediger & Michel & Naef (2022).