Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
MSstats package provide tools for preprocessing, summarization and differential analysis of mass spectrometry (MS) proteomics data. Recently, some MS protocols enable acquisition of data sets that result in larger than memory quantitative data. MSstats functions are not able to process such data. MSstatsBig package provides additional converter functions that enable processing larger than memory data sets.
Fragmentation spectral libraries and data to test the msPurity package.
MapScape integrates clonal prevalence, clonal hierarchy, anatomic and mutational information to provide interactive visualization of spatial clonal evolution. There are four inputs to MapScape: (i) the clonal phylogeny, (ii) clonal prevalences, (iii) an image reference, which may be a medical image or drawing and (iv) pixel locations for each sample on the referenced image. Optionally, MapScape can accept a data table of mutations for each clone and their variant allele frequencies in each sample. The output of MapScape consists of a cropped anatomical image surrounded by two representations of each tumour sample. The first, a cellular aggregate, visually displays the prevalence of each clone. The second shows a skeleton of the clonal phylogeny while highlighting only those clones present in the sample. Together, these representations enable the analyst to visualize the distribution of clones throughout anatomic space.
The package conducts pathway testing from untargetted metabolomics data. It requires the user to supply feature-level test results, from case-control testing, regression, or other suitable feature-level tests for the study design. Weights are given to metabolic features based on how many metabolites they could potentially match to. The package can combine positive and negative mode results in pathway tests.
This package provides a package containing an environment representing the Mu11KsubA.CDF file.
This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.
Pathway analysis based on p-values associated to genes from a genes expression analysis of interest. Utility functions enable to extract pathways from the Gene Ontology Biological Process (GOBP), Molecular Function (GOMF) and Cellular Component (GOCC), Kyoto Encyclopedia of Genes of Genomes (KEGG) and Reactome databases. Methodology, and helper functions to display the results as a table, barplot of pathway significance, Gene Ontology graph and pathway significance are available.
Melissa is a Baysian probabilistic model for jointly clustering and imputing single cell methylomes. This is done by taking into account local correlations via a Generalised Linear Model approach and global similarities using a mixture modelling approach.
ExperimentHubData package for the mulea comprehensive overrepresentation and functional enrichment analyser R package. Here we provide ontologies (gene sets) in a data.frame for 27 different organisms, ranging from Escherichia coli to human, all acquired from publicly available data sources. Each ontology is provided with multiple gene and protein identifiers. Please see the NEWS file for a list of changes in each version.
Our R package MultiRNAflow provides an easy to use unified framework allowing to automatically make both unsupervised and supervised (DE) analysis for datasets with an arbitrary number of biological conditions and time points. In particular, our code makes a deep downstream analysis of DE information, e.g. identifying temporal patterns across biological conditions and DE genes which are specific to a biological condition for each time.
Affymetrix moex10 annotation data (chip moex10sttranscriptcluster) assembled using data from public repositories.
Stores expression profiling data from experiments compatible with the multiWGCNA R package. This includes human postmortem microarray data from patients and controls (GSE28521), astrocyte Ribotag RNA-seq data from EAE and wildtype mice (GSE100329), and mouse RNA-seq data from tau pathology (rTg4510) and wildtype control mice (GSE125957). These data can be accessed using the ExperimentHub workflow (see multiWGCNA vignettes).
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
The *MungeSumstats* package is designed to facilitate the standardisation of GWAS summary statistics. It reformats inputted summary statisitics to include SNP, CHR, BP and can look up these values if any are missing. It also pefrorms dozens of QC and filtering steps to ensure high data quality and minimise inter-study differences.
Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution.
MSstatsQCgui is a Shiny app which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.
This package provides a package containing an environment representing the Mouse430A_2.cdf file.
DNA methylation is generally considered to be associated with transcriptional silencing. However, comprehensive, genome-wide investigation of this relationship requires the evaluation of potentially millions of correlation values between the methylation of individual genomic loci and expression of associated transcripts in a relatively large numbers of samples. Methodical makes this process quick and easy while keeping a low memory footprint. It also provides a novel method for identifying regions where a number of methylation sites are consistently strongly associated with transcriptional expression. In addition, Methodical enables housing DNA methylation data from diverse sources (e.g. WGBS, RRBS and methylation arrays) with a common framework, lifting over DNA methylation data between different genome builds and creating base-resolution plots of the association between DNA methylation and transcriptional activity at transcriptional start sites.
Two-stage measurement error model for correlation estimation with smaller bias than the usual sample correlation.
Indole-3-acetaldoxime (IAOx) represents an early intermediate of the biosynthesis of a variety of indolic secondary metabolites including the phytoanticipin indol-3-ylmethyl glucosinolate and the phytoalexin camalexin (3-thiazol-2'-yl-indole). Arabidopsis thaliana cyp79B2 cyp79B3 double knockout plants are completely impaired in the conversion of tryptophan to indole-3-acetaldoxime and do not accumulate IAOx-derived metabolites any longer. Consequently, comparative analysis of wild-type and cyp79B2 cyp79B3 plant lines has the potential to explore the complete range of IAOx-derived indolic secondary metabolites.
Store minor allele frequency data from the Genome Aggregation Database (gnomAD exomes release 2.1) for the human genome version GRCh38.
Annotation package containing all available miRNA names from 22 versions (data from http://www.mirbase.org/).
The MAIT package contains functions to perform end-to-end statistical analysis of LC/MS Metabolomic Data. Special emphasis is put on peak annotation and in modular function design of the functions.
This package primarily identifies variants in mitochondrial genomes from BAM alignment files. It filters these variants to remove RNA editing events then estimates their evolutionary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visualizes the mutations and providing additional genomic context.