Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The package contains the function for filtering genes by the proportion of variation accounted for by the first principal component (PVAC).
Platform Design Info for Affymetrix FinGene-1_1-st.
Platform Design Info for The Manufacturer's Name Citrus.
Platform Design Info for NimbleGen feinberg_mm8_me_hx1.
The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using a modified version of RMA algorithm. The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or original microarray probe set expressions as an output.
PhantasusLite – a lightweight package with helper functions of general interest extracted from phantasus package. In parituclar it simplifies working with public RNA-seq datasets from GEO by providing access to the remote HSDS repository with the precomputed gene counts from ARCHS4 and DEE2 projects.
Platform Design Info for Affymetrix PorGene-1_0-st.
Platform Design Info for Affymetrix Clariom_S_Mouse.
The package is an R wrapper for Progenetix REST API built upon the Beacon v2 protocol. Its purpose is to provide a seamless way for retrieving genomic data from Progenetix database—an open resource dedicated to curated oncogenomic profiles. Empowered by this package, users can effortlessly access and visualize data from Progenetix.
Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.
This package contains R functions to predict biological variables to from placnetal DNA methylation data generated from infinium arrays. This includes inferring ethnicity/ancestry, gestational age, and cell composition from placental DNA methylation array (450k/850k) data.
Platform Design Info for The Manufacturer's Name Rice.
The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) <doi:10.1371/journal.pcbi.1009148> for more details.
FHCRC Nelson Lab pedbarrayv10 Annotation Data (pedbarrayv10) assembled using data from public repositories.
Platform Design Info for Affymetrix miRNA-2_0.
Platform Design Info for The Manufacturer's Name RAE230B.
PhenoPath infers genomic trajectories (pseudotimes) in the presence of heterogeneous genetic and environmental backgrounds and tests for interactions between them.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was P\_aeg1a\_probe\_tab.
The phenomis package provides methods to perform post-processing (i.e. quality control and normalization) as well as univariate statistical analysis of single and multi-omics data sets. These methods include quality control metrics, signal drift and batch effect correction, intensity transformation, univariate hypothesis testing, but also clustering (as well as annotation of metabolomics data). The data are handled in the standard Bioconductor formats (i.e. SummarizedExperiment and MultiAssayExperiment for single and multi-omics datasets, respectively; the alternative ExpressionSet and MultiDataSet formats are also supported for convenience). As a result, all methods can be readily chained as workflows. The pipeline can be further enriched by multivariate analysis and feature selection, by using the ropls and biosigner packages, which support the same formats. Data can be conveniently imported from and exported to text files. Although the methods were initially targeted to metabolomics data, most of the methods can be applied to other types of omics data (e.g., transcriptomics, proteomics).
Platform Design Info for The Manufacturer's Name ATH1-121501.
Platform Design Info for Affymetrix Clariom_S_Rat_HT.
Platform Design Info for Affymetrix Atdschip_tiling.
Platform Design Info for The Manufacturer's Name Mu11KsubA.
Statistical analysis of peptide microarrays.