Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
Kokkos Core implements a programming model in C++ for writing performance portable applications targeting all major HPC platforms. For that purpose it provides abstractions for both parallel execution of code and data management. Kokkos is designed to target complex node architectures with N-level memory hierarchies and multiple types of execution resources.
The rfacts package is an R interface to the Fixed and Adaptive Clinical Trial Simulator FACTS. It programmatically invokes FACTS to run clinical trial simulations. It aggregates simulation output data into tidy data frames. These capabilities provide end-to-end automation for large-scale simulation pipelines, and they enhance computational reproducibility.
This package provides several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case and univariate case. Linear interpolation of irregular gridded data is also covered. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids.
This package provides a minimal low-level profiling API for CUDA.
This package provides the CUDA Direct Sparse Solver library.
This package provides Python low-level bindings for NVIDIA CUDA toolkit.
This binary extracts information from CUDA binary files (both standalone and those embedded in host binaries) and presents them in human readable format. The output of cuobjdump includes CUDA assembly code for each kernel, CUDA ELF section headers, string tables, relocators and other CUDA specific sections. It also extracts embedded ptx text from host binaries.
This package provides a an interactive profiler for CUDA and NVIDIA OptiX that provides detailed performance metrics and API debugging via a user interface and command-line tool. Users can run guided analysis and compare results with a customizable and data-driven user interface, as well as post-process and analyze results in their own workflows.
This package provides the CUDA Deep Neural Network library.
This package provides the CUDA C++ developers with building blocks that make it easier to write safe and efficient code. It unifies three essential former CUDA C++ libraries into a single repository:
Thrust (former repo)
CUB (former repo)
libcudacxx (former repo)
This package provides a command-line tool to profile CUDA kernels. It enables the collection of a timeline of CUDA-related activities on both CPU and GPU, including kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA kernels.
This package provides the NVIDIA tool for debugging CUDA applications running. CUDA-GDB is an extension to GDB, the GNU Project debugger. The tool provides developers with a mechanism for debugging CUDA applications running on actual hardware. This enables developers to debug applications without the potential variations introduced by simulation and emulation environments.
This package provides a system-wide performance analysis tool designed to visualize an application’s algorithms, identify the largest opportunities to optimize, and tune to scale efficiently across any quantity or size of CPUs and GPUs,from large servers to small systems-on-a-chip.
CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-matrix multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN.
CUTLASS decomposes these ``moving parts'' into reusable, modular software components abstracted by C++ template classes. Primitives for different levels of a conceptual parallelization hierarchy can be specialized and tuned via custom tiling sizes, data types, and other algorithmic policy. The resulting flexibility simplifies their use as building blocks within custom kernels and applications.
This package provides a C++ header-only library that wraps the NVIDIA CUDA Deep Neural Network library (cuDNN) C backend API. This entry point to the same API is less verbose (without loss of control), and adds functionality on top of the backend API, such as errata filters and autotuning.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides cuFFT, the NVIDIA® CUDA® Fast Fourier Transform (FFT) product. It consists of two separate libraries: cuFFT and cuFFTW. The cuFFT library is designed to provide high performance on NVIDIA GPUs. The cuFFTW library is provided as a porting tool to enable users of FFTW to start using NVIDIA GPUs with a minimum amount of effort.
The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier transforms of complex or real-valued data sets. It is one of the most important and widely used numerical algorithms in computational physics and general signal processing. The cuFFT library provides a simple interface for computing FFTs on an NVIDIA GPU, which allows users to quickly leverage the floating-point power and parallelism of the GPU in a highly optimized and tested FFT library. The cuFFTW library provides the FFTW3 API to facilitate porting of existing FFTW applications.
This package provides the CUDA Deep Neural Network library.
This package provides the CUDA compiler and the CUDA run-time support libraries for NVIDIA GPUs, all of which are proprietary.
This package provides a high-level library based on the cuBLAS and cuSPARSE libraries. It consists of two modules corresponding to two sets of API: the cuSolver API on a single GPU; and the cuSolverMG API on a single node multiGPU. Each of these can be used independently or in concert with other toolkit libraries. The intent of cuSolver is to provide useful LAPACK-like features, such as common matrix factorization and triangular solve routines for dense matrices, a sparse least-squares solver and an eigenvalue solver. In addition, cuSolver provides a new refactorization library useful for solving sequences of matrices with a shared sparsity pattern.
This package provides a GPU-accelerated library of primitives for deep neural networks, with highly tuned implementations for standard routines such as forward and backward convolution, attention, matmul, pooling, and normalization.
This package provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence of numbers satisfies most of the statistical properties of a truly random sequence but is generated by a deterministic algorithm. A quasirandom sequence of -dimensional points is generated by a deterministic algorithm designed to fill an -dimensional space evenly.