Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to compute state-specific and marginal life expectancies. The computation is based on a fitted continuous-time multi-state model that includes an absorbing death state; see Van den Hout (2017, ISBN:9781466568402). The fitted multi-state model model should be estimated using the msm package using age as the time-scale.
The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.
Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the package capable of solving high-dimensional problems.
Make your shiny application as executable program. Users do not need to install R and shiny on their system.
This package creates simple to highly customized tables for a wide selection of descriptive statistics, with or without weighting the data.
The main functions are emmreml', and emmremlMultiKernel'. emmreml solves a mixed model with known covariance structure using the EMMA algorithm. emmremlMultiKernel is a wrapper for emmreml to handle multiple random components with known covariance structures. The function emmremlMultivariate solves a multivariate gaussian mixed model with known covariance structure using the ECM algorithm.
An index measuring the amount of information brought by forecasts for extreme events, subject to calibration, is computed. This index is originally designed for weather or climate forecasts, but it may be used in other forecasting contexts. This is the implementation of the index in Taillardat et al. (2019) <arXiv:1905.04022>.
Making available in R the complete set of programs accompanying S. Wellek's (2010) monograph Testing Statistical Hypotheses of Equivalence and Noninferiority. Second Edition (Chapman&Hall/CRC).
This package provides tools for exploratory analysis of tabular data using colour highlighting. Highlighting is displayed in any console supporting ANSI colours, and can be converted to HTML', typst', latex and SVG'. quarto and rmarkdown rendering are directly supported. It is also possible to add colour to regular expression matches and highlight differences between two arbitrary R objects.
Model fitting and species biotic interaction network topology selection for explicit interaction community models. Explicit interaction community models are an extension of binomial linear models for joint modelling of species communities, that incorporate both the effects of species biotic interactions and the effects of missing covariates. Species interactions are modelled as direct effects of each species on each of the others, and are estimated alongside the effects of missing covariates, modelled as latent factors. The package includes a penalized maximum likelihood fitting function, and a genetic algorithm for selecting the most parsimonious species interaction network topology.
This package provides various statistical methods for evaluating heterogeneous treatment effects (HTE) in randomized experiments. The package includes tools to estimate uniform confidence bands for estimation of the group average treatment effect sorted by generic machine learning algorithms (GATES). It also provides the tools to identify a subgroup of individuals who are likely to benefit from a treatment the most "exceptional responders" or those who are harmed by it. Detailed reference in Imai and Li (2023) <doi:10.48550/arXiv.2310.07973>.
Gene information from Ensembl genome builds GRCh38.p14 and GRCh37.p13 to use with the topr package. The datasets were originally downloaded from <https://ftp.ensembl.org/pub/current/gtf/homo_sapiens/Homo_sapiens.GRCh38.111.gtf.gz> and <https://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz> and converted into the format required by the topr package. See <https://github.com/totajuliusd/topr?tab=readme-ov-file#how-to-use-topr-with-other-species-than-human> to see the required format.
This package provides a function that quickly computes the fine structure isotope patterns of a set of chemical formulas to a given degree of accuracy (up to the limit set by errors in floating point arithmetic). A data-set comprising the masses and isotopic abundances of individual elements is also provided and calculation of isotopic gross structures is also supported.
An R-based application for exploratory data analysis of global EvapoTranspiration (ET) datasets. evapoRe enables users to download, validate, visualize, and analyze multi-source ET data across various spatio-temporal scales. Also, the package offers calculation methods for estimating potential ET (PET), including temperature-based, combined type, and radiation-based approaches described in : Oudin et al., (2005) <doi:10.1016/j.jhydrol.2004.08.026>. evapoRe supports hydrological modeling, climate studies, agricultural research, and other data-driven fields by facilitating access to ET data and offering powerful analysis capabilities. Users can seamlessly integrate the package into their research applications and explore diverse ET data at different resolutions.
Implementation in a simple and efficient way of fully customisable population genetics simulations, considering multiple loci that have epistatic interactions. Specifically suited to the modelling of multilocus nucleocytoplasmic systems (with both diploid and haploid loci), it is nevertheless possible to simulate purely diploid (or purely haploid) genetic models. Examples of models that can be simulated with Ease are numerous, for example models of genetic incompatibilities as presented by Marie-Orleach et al. (2022) <doi:10.1101/2022.07.25.501356>. Many others are conceivable, although few are actually explored, Ease having been developed in particular to provide a solution so that these kinds of models can be simulated simply.
This package provides a plotting package for climate science and services. Provides a set of functions for visualizing climate data, including maps, time series, scorecards and other diagnostics. Some functions are adapted and extended from the s2dv and CSTools packages (Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>; Pérez-Zanón et al. (2022) <doi:10.5194/gmd-15-6115-2022>), with more consistent and integrated functionalities.
Enhanced False Discovery Rate (EFDR) is a tool to detect anomalies in an image. The image is first transformed into the wavelet domain in order to decorrelate any noise components, following which the coefficients at each resolution are standardised. Statistical tests (in a multiple hypothesis testing setting) are then carried out to find the anomalies. The power of EFDR exceeds that of standard FDR, which would carry out tests on every wavelet coefficient: EFDR choose which wavelets to test based on a criterion described in Shen et al. (2002). The package also provides elementary tools to interpolate spatially irregular data onto a grid of the required size. The work is based on Shen, X., Huang, H.-C., and Cressie, N. Nonparametric hypothesis testing for a spatial signal. Journal of the American Statistical Association 97.460 (2002): 1122-1140.
Implementation of the EPA's Ecological Exposure Research Division (EERD) tools (discontinued in 1999) for Probit and Trimmed Spearman-Karber Analysis. Probit and Spearman-Karber methods from Finney's book "Probit analysis a statistical treatment of the sigmoid response curve" with options for most accurate results or identical results to the book. Probit and all the tables from Finney's book (code-generated, not copied) with the generating functions included. Control correction: Abbott, Schneider-Orelli, Henderson-Tilton, Sun-Shepard. Toxicity scales: Horsfall-Barratt, Archer, Gauhl-Stover, Fullerton-Olsen, etc.
Create encrypted html files that are fully self contained and do not require any additional software. Using the package you can encrypt arbitrary html files and also directly create encrypted rmarkdown html reports.
Forecasting univariate time series with different decomposition based time delay neural network models. For method details see Yu L, Wang S, Lai KK (2008). <doi:10.1016/j.eneco.2008.05.003>.
Simulates and estimates the Exponential Random Partition Model presented in the paper Hoffman, Block, and Snijders (2023) <doi:10.1177/00811750221145166>. It can also be used to estimate longitudinal partitions, following the model proposed in Hoffman and Chabot (2023) <doi:10.1016/j.socnet.2023.04.002>. The model is an exponential family distribution on the space of partitions (sets of non-overlapping groups) and is called in reference to the Exponential Random Graph Models (ERGM) for networks.
This package provides functions for computing critical values and implementing the one-sided/two-sided EL tests.
Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").
This package provides unsupervised selection and clustering of microarray data using mixture models. Following the methods described in McLachlan, Bean and Peel (2002) <doi:10.1093/bioinformatics/18.3.413> a subset of genes are selected based one the likelihood ratio statistic for the test of one versus two components when fitting mixtures of t-distributions to the expression data for each gene. The dimensionality of this gene subset is further reduced through the use of mixtures of factor analyzers, allowing the tissue samples to be clustered by fitting mixtures of normal distributions.