Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a simple interface to the Geographic Header information from the "2010 US Census Summary File 2". The entire Summary File 2 is described at <https://catalog.data.gov/dataset/census-2000-summary-file-2-sf2>, but note that this package only provides access to parts of the geographic header ('geoheader') of the file. In particular, only the first 101 columns of the geoheader are included and, more importantly, only rows with summary levels (SUMLEVs) 010 through 050 (nation down through county level) are included. In addition to access to (part of) the geoheader, the package also provides a decode function that takes a column name and value and, for certain columns, returns "the meaning" of that column (i.e., a "SUMLEV" value of 40 means "State"); without a value, the decode function attempts to describe the column itself.
Up-and-Down (UD) is the most popular design approach for dose-finding, but it has been severely under-served by the statistical and computing communities. This is the first package that comprehensively addresses UD's needs. Recent applied UD tutorial: Oron et al., 2022 <doi:10.1097/ALN.0000000000004282>. Recent methodological overview: Oron and Flournoy, 2024 <doi:10.51387/24-NEJSDS74>.
This package provides a method for estimating log-normalizing constants (or free energies) and expectations from multiple distributions (such as multiple generalized ensembles).
Uniform Error Index is the weighted average of different error measures. Uniform Error Index utilizes output from different error function and gives more robust and stable error values. This package has been developed to compute Uniform Error Index from ten different loss function like Error Square, Square of Square Error, Quasi Likelihood Error, LogR-Square, Absolute Error, Absolute Square Error etc. The weights are determined using Principal Component Analysis (PCA) algorithm of Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
This package provides a variational mapping approach that reveals and expands future temporal dynamics from folded high-dimensional geometric distance spaces, unfold turns a set of time series into a 4D block of pairwise distances between reframed windows, learns a variational mapper that maps those distances to the next reframed window, and produces horizon-wise predictive functions for each input series. In short: it unfolds the future path of each series from a folded geometric distance representation.
This package provides tools for assigning molecular formulas from exact masses obtained by ultrahigh-resolution mass spectrometry. The methodology follows the workflow described in Leefmann et al. (2019) <doi:10.1002/rcm.8315>. The package supports the inspection, filtering and visualization of molecular formula data and includes utilities for calculating common molecular parameters (e.g., double bond equivalents, DBE). A graphical user interface is available via the shiny'-based ume application.
Fast flattening of hierarchical data structures (e.g. JSON, XML) into data.frames with a flexible spec language.
The udder quarter infection data set contains infection times of individual cow udder quarters with Corynebacterium bovis (Laevens et al. 1997 <DOI:10.3168/jds.S0022-0302(97)76295-7>). Obviously, the four udder quarters are clustered within a cow, and udder quarters are sampled only approximately monthly, generating interval-censored data. The data set contains both covariates that change within a cow (e.g., front and rear udder quarters) and covariates that change between cows (e.g., parity [the number of previous calvings]). The correlation between udder infection times within a cow also is of interest, because this is a measure of the infectivity of the agent causing the disease. Various models have been applied to address the problem of interdependence for right-censored event times. These models, as applied to this data set, can be found back in the publications found in the reference list.
Fit Bayesian hierarchical models of animal abundance and occurrence via the rstan package, the R interface to the Stan C++ library. Supported models include single-season occupancy, dynamic occupancy, and N-mixture abundance models. Covariates on model parameters are specified using a formula-based interface similar to package unmarked', while also allowing for estimation of random slope and intercept terms. References: Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.
Compiled and cleaned the county-level estimates of fertilizer, nitrogen and phosphorus, from 1945 to 2012 in United States of America (USA). The commercial fertilizer data were originally generated by USGS based on the sales data of commercial fertilizer. The manure data were estimated based on county-level population data of livestock, poultry, and other animals. See the user manual for detailed data sources and cleaning methods. usfertilizer utilized the tidyverse to clean the original data and provide user-friendly dataframe. Please note that USGS does not endorse this package. Also data from 1986 is not available for now.
United is a software tool which can be downloaded at the following website <http://www.schroepl.net/pbm/software/united/>. In general, it is a virtual manager game for football teams. This package contains helpful functions for determining an optimal formation for a virtual match in United. E.g. knowing that the opponent has a strong defensive it is advisable to beat him in the midfield. Furthermore, this package contains functions for computing the optimal usage of hardness in a game.
Efficient Bayesian implementations of probit, logit, multinomial logit and binomial logit models. Functions for plotting and tabulating the estimation output are available as well. Estimation is based on Gibbs sampling where the Markov chain Monte Carlo algorithms are based on the latent variable representations and marginal data augmentation algorithms described in "Gregor Zens, Sylvia Frühwirth-Schnatter & Helga Wagner (2023). Ultimate Pólya Gamma Samplers â Efficient MCMC for possibly imbalanced binary and categorical data, Journal of the American Statistical Association <doi:10.1080/01621459.2023.2259030>".
Seasonal unit roots and seasonal stability tests. P-values based on response surface regressions are available for both tests. P-values based on bootstrap are available for seasonal unit root tests.
Unit-Gompertz density, cumulative distribution, quantile functions and random deviate generation of the unit-Gompertz distribution. In addition, there are a function for fitting the Generalized Additive Models for Location, Scale and Shape.
This package provides researchers with a simple set of diagnostic tools for monitoring the progress and reliability of raters conducting content coding tasks. Goehring (2024) <https://bengoehring.github.io/improving-content-analysis-tools-for-working-with-undergraduate-research-assistants.pdf> argues that supervisors---especially supervisors of small teams---should utilize computational tools to monitor reliability in real time. As such, this package provides easy-to-use functions for calculating inter-rater reliability statistics and measuring the reliability of one coder compared to the rest of the team.
This is a new version of the userfriendlyscience package, which has grown a bit unwieldy. Therefore, distinct functionalities are being consciously uncoupled into different packages. This package contains the general-purpose tools and utilities (see the behaviorchange package, the rosetta package, and the soon-to-be-released scd package for other functionality), and is the most direct successor of the original userfriendlyscience package. For example, this package contains a number of basic functions to create higher level plots, such as diamond plots, to easily plot sampling distributions, to generate confidence intervals, to plan study sample sizes for confidence intervals, and to do some basic operations such as (dis)attenuate effect size estimates.
Implementation of the unity forest (UFO) framework (Hornung & Hapfelmeier, 2026, <doi:10.48550/arXiv.2601.07003>). UFOs are a random forest variant designed to better take covariates with purely interaction-based effects into account, including interactions for which none of the involved covariates exhibits a marginal effect. While this framework tends to improve discrimination and predictive accuracy compared to standard random forests, it also facilitates the identification and interpretation of (marginal or interactive) effects: In addition to the UFO algorithm for tree construction, the package includes the unity variable importance measure (unity VIM), which quantifies covariate effects under the conditions in which they are strongest - either marginally or within subgroups defined by interactions - as well as covariate-representative tree roots (CRTRs) that provide interpretable visualizations of these conditions. Currently, only classification is supported. This package is a fork of the R package ranger (main author: Marvin N. Wright), which implements random forests using an efficient C++ backend.
This package provides a set of functions to aid in the production of visuals in ggplot2.
Make requests from the US Treasury Fiscal Data API endpoints.
This package provides the ability to read Unisens data into R. Unisens is a universal data format for multi sensor data.
Format text (bold, italic, ...) and numbers using UTF-8. Offers functions to search for emojis and include them in your text.
This package provides a convenient wrapper for the UM-Bridge protocol. UM-Bridge is a protocol designed for coupling uncertainty quantification (or statistical / optimization) software to numerical models. A model is represented as a mathematical function with optional support for derivatives via Jacobian actions etc.
Complete work flow for the analysis of pharmacokinetic pharmacodynamic (PKPD), physiologically-based pharmacokinetic (PBPK) and systems pharmacology models including: creation of ordinary differential equation-based models, pooled parameter estimation, individual/population based simulations, rule-based simulations for clinical trial design and modeling assays, deployment with a customizable Shiny app, and non-compartmental analysis. System-specific analysis templates can be generated and each element includes integrated reporting with PowerPoint and Word'.
Implement a shrinkage estimation for the univariate normal mean based on a preliminary test (pretest) estimator. This package also provides the confidence interval based on pivoting the cumulative density function. The methodologies are published in Taketomi et al.(2024) <doi:10.1007/s42081-023-00221-2> and Taketomi et al.(2024-)(under review).