Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Construct and plot objective hierarchies and associated value and utility functions. Evaluate the values and utilities and visualize the results as colored objective hierarchies or tables. Visualize uncertainty by plotting median and quantile intervals within the nodes of objective hierarchies. Get numerical results of the evaluations in standard R data types for further processing.
Density, distribution function, quantile function, and random generating function of the Unit-Garima distribution based on Ayuyuen, S., & Bodhisuwan, W. (2024)<doi:10.18187/pjsor.v20i1.4307>.
Uniform Error Index is the weighted average of different error measures. Uniform Error Index utilizes output from different error function and gives more robust and stable error values. This package has been developed to compute Uniform Error Index from ten different loss function like Error Square, Square of Square Error, Quasi Likelihood Error, LogR-Square, Absolute Error, Absolute Square Error etc. The weights are determined using Principal Component Analysis (PCA) algorithm of Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
Uniform sampling of Directed Acyclic Graphs (DAG) using exact enumeration by relating each DAG to a sequence of outpoints (nodes with no incoming edges) and then to a composition of integers as suggested by Kuipers, J. and Moffa, G. (2015) <doi:10.1007/s11222-013-9428-y>.
Data from Unicode 16.0.0 and related utilities.
The udder quarter infection data set contains infection times of individual cow udder quarters with Corynebacterium bovis (Laevens et al. 1997 <DOI:10.3168/jds.S0022-0302(97)76295-7>). Obviously, the four udder quarters are clustered within a cow, and udder quarters are sampled only approximately monthly, generating interval-censored data. The data set contains both covariates that change within a cow (e.g., front and rear udder quarters) and covariates that change between cows (e.g., parity [the number of previous calvings]). The correlation between udder infection times within a cow also is of interest, because this is a measure of the infectivity of the agent causing the disease. Various models have been applied to address the problem of interdependence for right-censored event times. These models, as applied to this data set, can be found back in the publications found in the reference list.
Download and explore datasets from UCSC Xena data hubs, which are a collection of UCSC-hosted public databases such as TCGA, ICGC, TARGET, GTEx, CCLE, and others. Databases are normalized so they can be combined, linked, filtered, explored and downloaded.
This package provides researchers with a simple set of diagnostic tools for monitoring the progress and reliability of raters conducting content coding tasks. Goehring (2024) <https://bengoehring.github.io/improving-content-analysis-tools-for-working-with-undergraduate-research-assistants.pdf> argues that supervisors---especially supervisors of small teams---should utilize computational tools to monitor reliability in real time. As such, this package provides easy-to-use functions for calculating inter-rater reliability statistics and measuring the reliability of one coder compared to the rest of the team.
UpSet.js is a re-implementation of UpSetR to create interactive set visualizations for more than three sets. This is a htmlwidget wrapper around the JavaScript library UpSet.js'.
Model data with a suspected clustering structure (either in co-variate space, regression space or both) using a Bayesian product model with a logistic regression likelihood. Observations are represented graphically and clusters are formed through various edge removals or additions. Cluster quality is assessed through the log Bayesian evidence of the overall model, which is estimated using either a Sequential Monte Carlo sampler or a suitable transformation of the Bayesian Information Criterion as a fast approximation of the former. The internal Iterated Batch Importance Sampling scheme (Chopin (2002 <doi:10.1093/biomet/89.3.539>)) is made available as a free standing function.
Find and import datasets from the University of California Irvine Machine Learning (UCI ML) Repository into R. Supports working with data from UCI ML repository inside of R scripts, notebooks, and Quarto'/'RMarkdown documents. Access the UCI ML repository directly at <https://archive.ics.uci.edu/>.
This package provides a tool for checking how much information is disclosed when reporting summary statistics.
This package provides a unified R6-based interface for various machine learning models with automatic interface detection, consistent cross-validation, model interpretations via numerical derivatives, and visualization. Supports both regression and classification tasks with any model function that follows R's standard modeling conventions (formula or matrix interface).
This package provides functions for the creation and manipulation of scenes and objects within the Unity 3D video game engine (<https://unity.com/>). Specific focuses include the creation and import of terrain data and GameObjects as well as scene management.
This package provides a set of custom R Markdown templates for documents and presentations with the University of Illinois at Urbana-Champaign (UIUC) color scheme and identity standards.
Up-and-Down (UD) is the most popular design approach for dose-finding, but it has been severely under-served by the statistical and computing communities. This is the first package that comprehensively addresses UD's needs. Recent applied UD tutorial: Oron et al., 2022 <doi:10.1097/ALN.0000000000004282>. Recent methodological overview: Oron and Flournoy, 2024 <doi:10.51387/24-NEJSDS74>.
Pseudo-random number generation of 17 univariate distributions proposed by Demirtas. (2005) <DOI:10.22237/jmasm/1114907220>.
Updated versions of the 1970's "US State Facts and Figures" objects from the datasets package included with R. The new data is compiled from a number of sources, primarily from United States Census Bureau or the relevant federal agency.
Efficient Bayesian implementations of probit, logit, multinomial logit and binomial logit models. Functions for plotting and tabulating the estimation output are available as well. Estimation is based on Gibbs sampling where the Markov chain Monte Carlo algorithms are based on the latent variable representations and marginal data augmentation algorithms described in "Gregor Zens, Sylvia Frühwirth-Schnatter & Helga Wagner (2023). Ultimate Pólya Gamma Samplers â Efficient MCMC for possibly imbalanced binary and categorical data, Journal of the American Statistical Association <doi:10.1080/01621459.2023.2259030>".
Clustering and classification inference for high dimension low sample size (HDLSS) data with U-statistics. The package contains implementations of nonparametric statistical tests for sample homogeneity, group separation, clustering, and classification of multivariate data. The methods have high statistical power and are tailored for data in which the dimension L is much larger than sample size n. See Gabriela B. Cybis, Marcio Valk and SÃ lvia RC Lopes (2018) <doi:10.1080/00949655.2017.1374387>, Marcio Valk and Gabriela B. Cybis (2020) <doi:10.1080/10618600.2020.1796398>, Debora Z. Bello, Marcio Valk and Gabriela B. Cybis (2021) <arXiv:2106.09115>.
Basic statistical analyses. The package has been developed to be used in statistics courses at Bocconi University (Milan, Italy). Currently, the package includes some exploratory and inferential analyses usually presented in introductory statistics courses.
Calculate several understandability metrics of BPMN models. BPMN stands for business process modelling notation and is a language for expressing business processes into business process diagrams. Examples of these understandability metrics are: average connector degree, maximum connector degree, sequentiality, cyclicity, diameter, depth, token split, control flow complexity, connector mismatch, connector heterogeneity, separability, structuredness and cross connectivity. See R documentation and paper on metric implementation included in this package for more information concerning the metrics.
This package provides functions and a Shiny application for downloading, analyzing and visualizing datasets from UCSC Xena (<http://xena.ucsc.edu/>), which is a collection of UCSC-hosted public databases such as TCGA, ICGC, TARGET, GTEx, CCLE, and others.
This package provides a method for estimating log-normalizing constants (or free energies) and expectations from multiple distributions (such as multiple generalized ensembles).