Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Detection of differentially expressed genes (DEGs) from the comparison of two biological conditions (treated vs. untreated, diseased vs. normal, mutant vs. wild-type) among different levels of gene expression (transcriptome ,translatome, proteome), using several statistical methods: Rank Product, Translational Efficiency, t-test, Limma, ANOTA, DESeq, edgeR. Possibility to plot the results with scatterplots, histograms, MA plots, standard deviation (SD) plots, coefficient of variation (CV) plots. Detection of significantly enriched post-transcriptional regulatory factors (RBPs, miRNAs, etc) and Gene Ontology terms in the lists of DEGs previously identified for the two expression levels. Comparison of GO terms enriched only in one of the levels or in both. Calculation of the semantic similarity score between the lists of enriched GO terms coming from the two expression levels. Visual examination and comparison of the enriched terms with heatmaps, radar plots and barplots.
ExperimentHub package containing datasets for use in the TENET package's vignette and function examples. These include a variety of different objects to illustrate different datasets used in TENET functions. Where applicable, all datasets are aligned to the hg38 human genome.
timeOmics is a generic data-driven framework to integrate multi-Omics longitudinal data measured on the same biological samples and select key temporal features with strong associations within the same sample group. The main steps of timeOmics are: 1. Plaform and time-specific normalization and filtering steps; 2. Modelling each biological into one time expression profile; 3. Clustering features with the same expression profile over time; 4. Post-hoc validation step.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Implementation of a clustering method for time series gene expression data based on mixed-effects models with Gaussian variables and non-parametric cubic splines estimation. The method can robustly account for the high levels of noise present in typical gene expression time series datasets.
This package contains a collection of trans-omics datasets generated using various sequencing technologies such as RNA-seq, Mass spectrometry and ChIP-seq. Modalities include the bulk profiling of the phosphoproteome, proteome, transcriptome and epigenome. Data reflects the timecourses of different developmental systems from the mouse or human.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Test3\_probe\_tab.
The twoddpcr package takes Droplet Digital PCR (ddPCR) droplet amplitude data from Bio-Rad's QuantaSoft and can classify the droplets. A summary of the positive/negative droplet counts can be generated, which can then be used to estimate the number of molecules using the Poisson distribution. This is the first open source package that facilitates the automatic classification of general two channel ddPCR data. Previous work includes definetherain (Jones et al., 2014) and ddpcRquant (Trypsteen et al., 2015) which both handle one channel ddPCR experiments only. The ddpcr package available on CRAN (Attali et al., 2016) supports automatic gating of a specific class of two channel ddPCR experiments only.
Various mRNA sequencing library preparation methods generate sequencing reads specifically from the transcript ends. Analyses that focus on quantification of isoform usage from such data can be aided by using truncated versions of transcriptome annotations, both at the alignment or pseudo-alignment stage, as well as in downstream analysis. This package implements some convenience methods for readily generating such truncated annotations and their corresponding sequences.
The tuberculosis R/Bioconductor package features tuberculosis gene expression data for machine learning. All human samples from GEO that did not come from cell lines, were not taken postmortem, and did not feature recombination have been included. The package has more than 10,000 samples from both microarray and sequencing studies that have been processed from raw data through a hyper-standardized, reproducible pipeline.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
colorectal cancer mRNA profile provided by TCGA.
RNA-seq count data from Pickrell et al. (2010) employed to illustrate the use of the Poisson-Tweedie family of distributions with the tweeDEseq package.
This is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. It can perform unsupervised feature extraction. It uses tensor decomposition. It is applicable to gene expression, DNA methylation, and histone modification etc. It can perform multiomics analysis. It is also potentially applicable to single cell omics data sets.
This package performs a Gene Set Analysis with the approach adopted by PADOG on the genes that are reported as translationally regulated (ie. exhibit a significant change in TE) by the DeltaTE package. It can be used on its own to see the impact of translation regulation on gene sets, but it is also integrated as an additional analysis method within ReactomeGSA, where results are further contextualised in terms of pathways and directionality of the change.
The Cancer Genome Atlas (TCGA) is applying genomics technologies to over 20 different types of cancer. This package contains a small set of 450k array data in idat format.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from BioMart by exposing these as TxDb objects. This package is for Arabidopsis thaliana (taxID: 3702). The BioMart plantsmart release number is 51.
This package provides a fast scatterplot smoother based on B-splines with second-order difference penalty. Functions for microarray normalization of single-colour data i.e. Affymetrix/Illumina and two-colour data supplied as marray MarrayRaw-objects or limma RGList-objects are available.
This data package contains timecourse gene expression data sets. The first dataset, from Shoemaker et al, consists of microarray samples from lung tissue of mice exposed to different influenzy strains from 14 timepoints. The two other datasets are leaf and root samples from sorghum crops exposed to pre- and post-flowering drought stress and a control condition, sampled across the plants lifetime.
This package provides a package containing an environment represeting the newcdf/tinesATH1.cdf.cdf file.
tidySingleCellExperiment is an adapter that abstracts the SingleCellExperiment container in the form of a tibble'. This allows *tidy* data manipulation, nesting, and plotting. For example, a tidySingleCellExperiment is directly compatible with functions from tidyverse packages `dplyr` and `tidyr`, as well as plotting with `ggplot2` and `plotly`. In addition, the package provides various utility functions specific to single-cell omics data analysis (e.g., aggregation of cell-level data to pseudobulks).
TENET identifies key transcription factors (TFs) and regulatory elements (REs) linked to a specific cell type by finding significantly correlated differences in gene expression and RE DNA methylation between case and control input datasets, and identifying the top genes by number of significant RE DNA methylation site links. It also includes many tools for visualization and analysis of the results, including plots displaying and comparing methylation and expression data and methylation site link counts, survival analysis, TF motif searching in the vicinity of linked RE DNA methylation sites, custom TAD and peak overlap analysis, and UCSC Genome Browser track file generation. A utility function is also provided to download methylation, expression, and patient survival data from The Cancer Genome Atlas (TCGA) for use in TENET or other analyses.
The package provides ready to use epigenomes (obtained from TWGBS) and transcriptomes (RNA-seq) from various tissues as obtained in the study (Delacher and Imbusch 2017, PMID: 28783152). Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. The underlying dataset characterises the epigenetic and transcriptomic modifications for specialized tissue Treg cells.