Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interface for multiple data sources, such as the `EDDS` API <https://evds2.tcmb.gov.tr/index.php?/evds/userDocs> of the Central Bank of the Republic of Türkiye and the `FRED` API <https://fred.stlouisfed.org/docs/api/fred/> of the Federal Reserve Bank. Both data providers require API keys for access, which users can easily obtain by creating accounts on their respective websites. The package provides caching ability with the selection of periods to increase the speed and efficiency of requests. It combines datasets requested from different sources, helping users when the data has common frequencies. While combining data frames whenever possible, it also keeps all requested data available as separate data frames to increase efficiency.
This package provides a toolkit for Commodities analytics', risk management and trading professionals. Includes functions for API calls to <https://commodities.morningstar.com/#/>, <https://developer.genscape.com/>, and <https://www.bankofcanada.ca/valet/docs>.
This package provides functionality to read settings, statuses and readings of weather stations from the ZENTRA Cloud API <https://zentracloud.com/api/v1/guide#APIGuidelines>.
Minimally adjust the values of numerical records in a data.frame, such that each record satisfies a predefined set of equality and/or inequality constraints. The constraints can be defined using the validate package. The core algorithms have recently been moved to the lintools package, refer to lintools for a more basic interface and access to a version of the algorithm that works with sparse matrices.
Convert text into target classifications (e.g., ISO 3166-1) using a JSON mapping with regular expressions. Provides helpers to return the full mapping and associated metadata.
In order to facilitate R instruction for actuaries, we have organized several sets of publicly available data of interest to non-life actuaries. In addition, we suggest a set of packages, which most practicing actuaries will use routinely. Finally, there is an R markdown skeleton for basic reserve analysis.
Open any data frame with visidata', a terminal-based spreadsheet application <https://www.visidata.org>.
Ensemble model, for classification, regression and unsupervised learning, based on a forest of unpruned and randomized binary decision trees. Each tree is grown by sampling, with replacement, a set of variables at each node. Each cut-point is generated randomly, according to the continuous Uniform distribution. For each tree, data are either bootstrapped or subsampled. The unsupervised mode introduces clustering, dimension reduction and variable importance, using a three-layer engine. Random Uniform Forests are mainly aimed to lower correlation between trees (or trees residuals), to provide a deep analysis of variable importance and to allow native distributed and incremental learning.
TROLL is coded in C++ and it typically simulates hundreds of thousands of individuals over hundreds of years. The rcontroll R package is a wrapper of TROLL'. rcontroll includes functions that generate inputs for simulations and run simulations. Finally, it is possible to analyse the TROLL outputs through tables, figures, and maps taking advantage of other R visualisation packages. rcontroll also offers the possibility to generate a virtual LiDAR point cloud that corresponds to a snapshot of the simulated forest.
Aims at loading Google Adwords data into R. Adwords is an online advertising service that enables advertisers to display advertising copy to web users (see <https://developers.google.com/adwords/> for more information). Therefore the package implements three main features. First, the package provides an authentication process for R with the Google Adwords API (see <https://developers.google.com/adwords/api/> for more information) via OAUTH2. Second, the package offers an interface to apply the Adwords query language in R and query the Adwords API with ad-hoc reports. Third, the received data are transformed into suitable data formats for further data processing and data analysis.
Enables researchers to conduct multivariate statistical analyses of survey data with randomized response technique items from several designs, including mirrored question, forced question, and unrelated question. This includes regression with the randomized response as the outcome and logistic regression with the randomized response item as a predictor. In addition, tools for conducting power analysis for designing randomized response items are included. The package implements methods described in Blair, Imai, and Zhou (2015) Design and Analysis of the Randomized Response Technique, Journal of the American Statistical Association <https://graemeblair.com/papers/randresp.pdf>.
Biologically relevant, yet mathematically sound constraints are used to compute the propensity and thence infer the dominant direction of reactions of a generic biochemical network. The reactions must be unique and their number must exceed that of the reactants,i.e., reactions >= reactants + 2. ReDirection', computes the null space of a user-defined stoichiometry matrix. The spanning non-zero and unique reaction vectors (RVs) are combinatorially summed to generate one or more subspaces recursively. Every reaction is represented as a sequence of identical components across all RVs of a particular subspace. The terms are evaluated with (biologically relevant bounds, linear maps, tests of convergence, descriptive statistics, vector norms) and the terms are classified into forward-, reverse- and equivalent-subsets. Since, these are mutually exclusive the probability of occurrence is binary (all, 1; none, 0). The combined propensity of a reaction is the p1-norm of the sub-propensities, i.e., sum of the products of the probability and maximum numeric value of a subset (least upper bound, greatest lower bound). This, if strictly positive is the probable rate constant, is used to infer dominant direction and annotate a reaction as "Forward (f)", "Reverse (b)" or "Equivalent (e)". The inherent computational complexity (NP-hard) per iteration suggests that a suitable value for the number of reactions is around 20. Three functions comprise ReDirection. These are check_matrix() and reaction_vector() which are internal, and calculate_reaction_vector() which is external.
Wraps the Ollama <https://ollama.com> API, which can be used to communicate with generative large language models locally.
This tool can be used to build binary interval trees using real number inputs. The tree supports queries of intervals overlapping a single number or an interval (start, end). Intervals with same bounds but different names are treated as distinct intervals. Insertion of intervals is also allowed. Deletion of intervals is not implemented at this point. See Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars (2008). Computational Geometry: Algorithms and Applications, for a reference.
This package provides a lightweight implementation of the geomorphon terrain form classification algorithm of Jasiewicz and Stepinski (2013) <doi:10.1016/j.geomorph.2012.11.005> based largely on the GRASS GIS r.geomorphon module. This implementation employs a novel algorithm written in C++ and RcppParallel'.
The significance of mean difference tests in clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. This package enables one to compute necessary sample sizes for single-step (Bonferroni) and step-wise procedures (Holm and Hochberg). These three procedures control the q-generalized family-wise error rate (probability of making at least q false rejections). Sample size is computed (for these single-step and step-wise procedures) in a such a way that the r-power (probability of rejecting at least r false null hypotheses, i.e. at least r significant endpoints among m) is above some given threshold, in the context of tests of difference of means for two groups of continuous endpoints (variables). Various types of structure of correlation are considered. It is also possible to analyse data (i.e., actually test difference in means) when these are available. The case r equals 1 is treated in separate functions that were used in Lafaye de Micheaux et al. (2014) <doi:10.1080/10543406.2013.860156>.
This package implements methods described by the paper Robins and Tsiatis (1991) <DOI:10.1080/03610929108830654>. These use g-estimation to estimate the causal effect of a treatment in a two-armed randomised control trial where non-compliance exists and is measured, under an assumption of an accelerated failure time model and no unmeasured confounders.
This package provides functions to facilitate inference on the relative importance of predictors in a linear or generalized linear model, and a couple of useful Tcl/Tk widgets.
Proper L2-penalized maximum likelihood estimators for precision matrices and supporting functions to employ these estimators in a graphical modeling setting. For details, see Peeters, Bilgrau, & van Wieringen (2022) <doi:10.18637/jss.v102.i04> and associated publications.
This package provides a computational resource designed to accurately detect microbial nucleic acids while filtering out contaminants and false-positive taxonomic assignments from standard transcriptomic sequencing of mammalian tissues. For more details, see Ghaddar (2023) <doi:10.1038/s43588-023-00507-1>. This implementation leverages the polars package for fast and systematic microbial signal recovery and denoising from host tissue genomic sequencing.
Creating 3D radial visualizations of multivariate data. The package extends traditional radial coordinate visualization (RadViz) techniques to three-dimensional space, enabling enhanced exploration and analysis of high-dimensional datasets through interactive 3D plots. Zhu, Dai & Maitra (2022) <doi:10.1080/10618600.2021.2020129>.
Currently fully supports Enrichr, JASPAR, miEAA, PANTHER, Reactome, STRING, and UniProt! The goal of rbioapi is to provide a user-friendly and consistent interface to biological databases and services. In a way that insulates the user from the technicalities of using web services API and creates a unified and easy-to-use interface to biological and medical web services. This is an ongoing project; New databases and services will be added periodically. Feel free to suggest any databases or services you often use.
Bayes estimation of probit choice models in cross-sectional and panel settings. The package can analyze binary, multivariate, ordered, and ranked choices, as well as heterogeneity of choice behavior among deciders. The main functionality includes model fitting via Gibbs sampling, tools for convergence diagnostic, choice data simulation, in-sample and out-of-sample choice prediction, and model selection using information criteria and Bayes factors. The latent class model extension facilitates preference-based decider classification, where the number of latent classes can be inferred via the Dirichlet process or a weight-based updating heuristic. This allows for flexible modeling of choice behavior without the need to impose structural constraints. For a reference on the method, see Oelschlaeger and Bauer (2021) <https://trid.trb.org/view/1759753>.
An ODBC database interface.