Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a comprehensive set of regular expression functions based on those found in Python without relying on reticulate'. It provides functions that intend to (1) make it easier for users familiar with Python to work with regular expressions, (2) reduce the complexity often associated with regular expressions code, (3) and enable users to write more readable and maintainable code that relies on regular expression-based pattern matching.
This package provides a means to style plots through cascading style sheets. This separates the aesthetics from the data crunching in plots and charts.
With this package we provide an easy method to compute robust and conditional Data Envelopment Analysis (DEA), Free Disposal Hull (FDH) and Benefit of the Doubt (BOD) scores. The robust approach is based on the work of Cazals, Florens and Simar (2002) <doi:10.1016/S0304-4076(01)00080-X>. The conditional approach is based on Daraio and Simar (2007) <doi:10.1007/s11123-007-0049-3>. Besides we provide graphs to help with the choice of m. We relay on the Benchmarking package to compute the efficiency scores and on the np package to compute non parametric estimation of similarity among units.
Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.
R implementation of Maximum Likelihood Principal Component Analysis The main idea of this package is to have an alternative way of PCA for subspace modeling that considers measurement errors. More details can be found in Peter D. Wentzell (2009) <doi:10.1016/B978-0-444-64165-6.03029-9>.
Allows users to easily create references to R objects then dereference when needed or modify in place without using reference classes, environments, or active bindings as workarounds. Users can also create expression references that allow subsets of any object to be referenced or expressions containing references to multiple objects.
Generic functions to analyze the distribution of two continuous variables: conf2d to calculate a smooth empirical confidence region, and freq2d to calculate a frequency distribution.
The goal of Rigma is to provide a user friendly client to the Figma API <https://www.figma.com/developers/api>. It uses the latest `httr2` for a stable interface with the REST API. More than 20 methods are provided to interact with Figma files, and teams. Get design data into R by reading published components and styles, converting and downloading images, getting access to the full Figma file as a hierarchical data structure, and much more. Enhance your creativity and streamline the application development by automating the extraction, transformation, and loading of design data to your applications and HTML documents.
Gather boxscore, play-by-play, and auxiliary data from Major League Volleyball (MLV) <https://provolleyball.com>, League One Volleyball Pro (LOVB) <https://www.lovb.com/pro-league>, and Athletes Unlimited Pro Volleyball (AU) <https://auprosports.com/volleyball/> to create a repository of basic and advanced statistics for teams and players.
Interface to the yacas computer algebra system (<http://www.yacas.org/>).
This package provides a wrapper for running the bundled Open-WBO Maximum Satisfiability (MaxSAT) solver (<https://github.com/sat-group/open-wbo>). Users can pass command-line arguments to the solver and capture its output as a character string or file.
Routines to interact with the Numerai Machine Learning Tournament API <https://numer.ai>. The functionality includes the ability to automatically download the current tournament data, submit predictions, and to get information for your user.
Computation of one-, two- and three-dimensional pseudo-observations based on recurrent events and terminal events. Generalised linear models are fitted using generalised estimating equations. Technical details on the bivariate procedure can be found in "Bivariate pseudo-observations for recurrent event analysis with terminal events" (Furberg et al., 2021) <doi:10.1007/s10985-021-09533-5>.
Random univariate and multivariate finite mixture model generation, estimation, clustering, latent class analysis and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or circular von Mises parametric families.
This package provides an efficient procedure for fitting the entire solution path for high-dimensional regularized quadratic generalized linear models with interactions effects under the strong or weak heredity constraint.
Generates random walks of various types by providing a set of functions that are compatible with the tidyverse'. The functions provided in the package make it simple to create random walks with a variety of properties, such as how many simulations to run, how many steps to take, and the distribution of random walk itself.
This package performs genome-wide association studies (GWAS) on individuals that are both related and have repeated measurements. For each Single Nucleotide Polymorphism (SNP), it computes score statistic based p-values for a linear mixed model including random polygenic effects and a random effect for repeated measurements. The computed p-values can be visualized in a Manhattan plot. For more details see Ronnegard et al. (2016) <doi:10.1111/2041-210X.12535> and for more examples see <https://github.com/larsronn/RepeatABEL_Tutorials>.
Relevant Component Analysis (RCA) tries to find a linear transformation of the feature space such that the effect of irrelevant variability is reduced in the transformed space.
The open sourced data management software Integrated Rule-Oriented Data System ('iRODS') offers solutions for the whole data life cycle (<https://irods.org/>). The loosely constructed and highly configurable architecture of iRODS frees the user from strict formatting constraints and single-vendor solutions. This package provides an interface to the iRODS HTTP API, allowing you to manage your data and metadata in iRODS with R. Storage of annotated files and R objects in iRODS ensures findability, accessibility, interoperability, and reusability of data.
This package contains a collection of helper functions to use with rbi', the R interface to LibBi', described in Murray et al. (2015) <doi:10.18637/jss.v067.i10>. It contains functions to adapt the proposal distribution and number of particles in particle Markov-Chain Monte Carlo, as well as calculating the Deviance Information Criterion (DIC) and converting between times in LibBi results and R time/dates.
This package provides a collection of palettes designed to integrate with ggplot', reflecting the color schemes associated with ConesaLab'.
This package provides an R interface to the Data Retriever <https://retriever.readthedocs.io/en/latest/> via the Data Retriever's command line interface. The Data Retriever automates the tasks of finding, downloading, and cleaning public datasets, and then stores them in a local database.
This package provides functions to conduct hypothesis tests and derive confidence intervals for quantiles, linear combinations of quantiles, ratios of dependent linear combinations and differences and ratios of all of the above for comparisons between independent samples. Additionally, quantile-based measures of inequality are also considered.
This package provides bioaccumulation factors from a toxicokinetic model fitted to accumulation-depuration data. It is designed to fulfil the requirements of regulators when examining applications for market authorization of active substances.