Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Data visualization tours animates linear projection of multivariate data as its basis (ie. orientation) changes. The spinifex packages generates paths for manual tours by manipulating the contribution of a single variable at a time Cook & Buja (1997) <doi:10.1080/10618600.1997.10474754>. Other types of tours, such as grand (random walk) and guided (optimizing some objective function) are available in the tourr package Wickham et al. <doi:10.18637/jss.v040.i02>. spinifex builds on tourr and can render tours with gganimate and plotly graphics, and allows for exporting as an .html widget and as an .gif, respectively. This work is fully discussed in Spyrison & Cook (2020) <doi:10.32614/RJ-2020-027>.
This package provides functions for obtaining p-values (for hypothesis tests), confidence intervals, and multivariate confidence sets. In particular, the method is compatible with differentially private dataset, as long as the privacy mechanism is known. For more details, see Awan and Wang (2024), "Simulation-based, Finite-sample Inference for Privatized Data", <doi:10.48550/arXiv.2303.05328>.
Generate continuous (normal or non-normal), binary, ordinal, and count (Poisson or Negative Binomial) variables with a specified correlation matrix. It can also produce a single continuous variable. This package can be used to simulate data sets that mimic real-world situations (i.e. clinical or genetic data sets, plasmodes). All variables are generated from standard normal variables with an imposed intermediate correlation matrix. Continuous variables are simulated by specifying mean, variance, skewness, standardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman's third-order (<DOI:10.1007/BF02293811>) or Headrick's fifth-order (<DOI:10.1016/S0167-9473(02)00072-5>) polynomial transformation. Binary and ordinal variables are simulated using a modification of the ordsample() function from GenOrd'. Count variables are simulated using the inverse cdf method. There are two simulation pathways which differ primarily according to the calculation of the intermediate correlation matrix. In Correlation Method 1, the intercorrelations involving count variables are determined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli's 2012 method, <DOI:10.1002/asmb.901>). In Correlation Method 2, the count variables are treated as ordinal (adapting Barbiero and Ferrari's 2015 modification of GenOrd, <DOI:10.1002/asmb.2072>). There is an optional error loop that corrects the final correlation matrix to be within a user-specified precision value of the target matrix. The package also includes functions to calculate standardized cumulants for theoretical distributions or from real data sets, check if a target correlation matrix is within the possible correlation bounds (given the distributions of the simulated variables), summarize results (numerically or graphically), to verify valid power method pdfs, and to calculate lower standardized kurtosis bounds.
Flexibly simulates a dataset with time-varying covariates with user-specified exchangeable correlation structures across and within clusters. Covariates can be normal or binary and can be static within a cluster or time-varying. Time-varying normal variables can optionally have linear trajectories within each cluster. See ?make_one_dataset for the main wrapper function. See Montez-Rath et al. <arXiv:1709.10074> for methodological details.
Fit a spatial-temporal occupancy models using a probit formulation instead of a traditional logit model.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
This package provides SPSS- and SAS-like output for least squares multiple regression, logistic regression, and count variable regressions. Detailed output is also provided for OLS moderated regression, interaction plots, and Johnson-Neyman regions of significance. The output includes standardized coefficients, partial and semi-partial correlations, collinearity diagnostics, plots of residuals, and detailed information about simple slopes for interactions. The output for some functions includes Bayes Factors and, if requested, regression coefficients from Bayesian Markov Chain Monte Carlo analyses. There are numerous options for model plots. The REGIONS_OF_SIGNIFICANCE function also provides Johnson-Neyman regions of significance and plots of interactions for both lm and lme models. There is also a function for partial and semipartial correlations and a function for conducting Cohen's set correlation analyses.
Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.
To determine sample size or power for case-control studies to be analyzed using logistic regression.
Computes synchrony as windowed cross-correlation based on two-dimensional time series in a text file you can upload. SUSY works as described in Tschacher & Meier (2020) <doi:10.1080/10503307.2019.1612114>.
Prototype your shiny apps quickly with these Lorem-Ipsum-like Helpers.
This package provides a stable approach to variable selection through stability selection and the use of a permutation-based objective stability threshold. Lima et al (2021) <doi:10.1038/s41598-020-79317-8>, Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>.
Customise Shiny disconnected screens as well as sanitize error messages to make them clearer and friendlier to the user.
This package implements functions for working with absorbing Markov chains. The implementation is based on the framework described in "Toward a unified framework for connectivity that disentangles movement and mortality in space and time" by Fletcher et al. (2019) <doi:10.1111/ele.13333>, which applies them to spatial ecology. This framework incorporates both resistance and absorption with spatial absorbing Markov chains (SAMC) to provide several short-term and long-term predictions for metrics related to connectivity in landscapes. Despite the ecological context of the framework, this package can be used in any application of absorbing Markov chains.
Efficient R package for latent class analysis of recurrent events, based on the semiparametric multiplicative intensity model by Zhao et al. (2022) <doi:10.1111/rssb.12499>. SLCARE returns estimates for non-functional model parameters along with the associated variance estimates and p-values. Visualization tools are provided to depict the estimated functional model parameters and related functional quantities of interest. SLCARE also delivers a model checking plot to help assess the adequacy of the fitted model.
The saemix package implements the Stochastic Approximation EM algorithm for parameter estimation in (non)linear mixed effects models. It (i) computes the maximum likelihood estimator of the population parameters, without any approximation of the model (linearisation, quadrature approximation,...), using the Stochastic Approximation Expectation Maximization (SAEM) algorithm, (ii) provides standard errors for the maximum likelihood estimator (iii) estimates the conditional modes, the conditional means and the conditional standard deviations of the individual parameters, using the Hastings-Metropolis algorithm (see Comets et al. (2017) <doi:10.18637/jss.v080.i03>). Many applications of SAEM in agronomy, animal breeding and PKPD analysis have been published by members of the Monolix group. The full PDF documentation for the package including references about the algorithm and examples can be downloaded on the github of the IAME research institute for saemix': <https://github.com/iame-researchCenter/saemix/blob/7638e1b09ccb01cdff173068e01c266e906f76eb/docsaem.pdf>.
Set of functions that access information about deputies and votings in Polish diet from webpage <http://www.sejm.gov.pl>. The package was developed as a result of an internship in MI2 Group - <http://mi2.mini.pw.edu.pl>, Faculty of Mathematics and Information Science, Warsaw University of Technology.
This package provides a set of functions to build a scoring model from beginning to end, leading the user to follow an efficient and organized development process, reducing significantly the time spent on data exploration, variable selection, feature engineering, binning and model selection among other recurrent tasks. The package also incorporates monotonic and customized binning, scaling capabilities that transforms logistic coefficients into points for a better business understanding and calculates and visualizes classic performance metrics of a classification model.
Used for creating swimmers plots with functions to customize the bars, add points, add lines, add text, and add arrows.
This package provides functions for statistical analysis of point processes.
This package contains functionality for regression standardization. Four general classes of models are allowed; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models and shared frailty gamma-Weibull models. Sjolander, A. (2016) <doi:10.1007/s10654-016-0157-3>.
This package provides functions for calculating species richness for rarefaction and extrapolation, primarily non-parametric species richness such as jackknife, Chao1, and ACE. Also available are functions for plotting species richness and extrapolation curves, and computing standard diversity and entropy indices.
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.
Automatically calculate direct, indirect, and total effects for piecewise structural equation models, comprising lists of fitted models representing structured equations (Lefcheck, 2016 <doi:10/f8s8rb>). Confidence intervals are provided via bootstrapping.