Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Symphony single-cell reference building and query mapping algorithms and additional functions described in Kang et al <https://www.nature.com/articles/s41467-021-25957-x>.
Privacy protected raster maps can be created from spatial point data. Protection methods include smoothing of dichotomous variables by de Jonge and de Wolf (2016) <doi:10.1007/978-3-319-45381-1_9>, continuous variables by de Wolf and de Jonge (2018) <doi:10.1007/978-3-319-99771-1_23>, suppressing revealing values and a generalization of the quad tree method by Suñé, Rovira, Ibáñez and Farré (2017) <doi:10.2901/EUROSTAT.C2017.001>.
This package provides a S3 resource is provided by Amazon Web Services S3 or a S3-compatible object store (such as Minio). The resource can be a tidy file to be downloaded from the object store, or a data lake (such as Delta Lake) Parquet file to be read by Apache Spark.
Allows the user to estimate a vector logistic smooth transition autoregressive model via maximum log-likelihood or nonlinear least squares. It further permits to test for linearity in the multivariate framework against a vector logistic smooth transition autoregressive model with a single transition variable. The estimation method is discussed in Terasvirta and Yang (2014, <doi:10.1108/S0731-9053(2013)0000031008>). Also, realized covariances can be constructed from stock market prices or returns, as explained in Andersen et al. (2001, <doi:10.1016/S0304-405X(01)00055-1>).
The overall performance of soil ecosystem services and productivity greatly relies on soil health, making it a crucial indicator. The evaluation of soil physical, chemical, and biological parameters is necessary to determine the overall soil quality index. In our package, three commonly used methods, including linear scoring, regression-based, and principal component-based soil quality indexing, are employed to calculate the soil quality index. This package has been developed using concept of Bastida et al. (2008) and Doran and Parkin (1994) <doi:10.1016/j.geoderma.2008.08.007> <doi:10.2136/sssaspecpub35.c1>.
This package provides a set of functions to support experimentation in the utility of partially synthetic data sets. All functions compare an observed data set to one or a set of partially synthetic data sets derived from the observed data to (1) check that data sets have identical attributes, (2) calculate overall and specific variable perturbation rates, (3) check for potential logical inconsistencies, and (4) calculate confidence intervals and standard errors of desired variables in multiple imputed data sets. Confidence interval and standard error formulas have options for either synthetic data sets or multiple imputed data sets. For more information on the formulas and methods used, see Reiter & Raghunathan (2007) <doi:10.1198/016214507000000932>.
This package provides a set of statistical tools for spatio-temporal data exploration. Includes simple plotting functions, covariance calculations and computations similar to principal component analysis for spatio-temporal data. Can use both dataframes and stars objects for all plots and computations. For more details refer Spatio-Temporal Statistics with R (Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie, 2019, ISBN:9781138711136).
Data sets and sample lmer analyses corresponding to the examples in Littell, Milliken, Stroup and Wolfinger (1996), "SAS System for Mixed Models", SAS Institute.
Generally, soil functionality is characterized by its capability to sustain microbial activity, nutritional element supply, structural stability and aid for crop production. Since soil functions can be linked to 80% of ecosystem services, conservation of degraded land should strive to restore not only the capacity of soil to sustain flora but also ecosystem provisions. The primary ecosystem services of soil are carbon sequestration, food or biomass production, provision of microbial habitat, nutrient recycling. However, the actual magnitude of soil functions provided by agricultural land uses has never been quantified. Nutrient supply capacity (NSC) is a measure of nutrient dynamics in restored land uses. Carbon accumulation proficiency (CAP) is a measure of ecosystem carbon sequestration. Biological activity index (BAI) is the average of responses of all enzyme activities in treated land over control/reference land. The CAP parameter investigates how land uses may affect carbon flows, retention, and sequestration. The CAP provides a signal for C cycles, flows, and the systems relative operational supremacy.
Predicts the occurrence times (in day-of-year) of spring phenological events. Three methods, including the accumulated degree days (ADD) method, the accumulated days transferred to a standardized temperature (ADTS) method, and the accumulated developmental progress (ADP) method, were used. See Shi et al. (2017a) <doi:10.1016/j.agrformet.2017.04.001> and Shi et al. (2017b) <doi:10.1093/aesa/sax063> for details.
Allows users to easily build custom docker images <https://docs.docker.com/> from Amazon Web Service Sagemaker <https://aws.amazon.com/sagemaker/> using Amazon Web Service CodeBuild <https://aws.amazon.com/codebuild/>.
Calculate superior identification index and its extensions. Measure the performance of journals based on how well they could identify the top papers by any index (e.g. citation indices) according to Huang & Yang. (2022) <doi:10.1007/s11192-022-04372-z>. These methods could be extended to evaluate other entities such as institutes, countries, etc.
This package provides a streamlined and user-friendly framework for simulating data in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. This package was designed to generate data for the simulations performed in Pesigan, Russell, and Chow (2025) <doi:10.1037/met0000779>.
This package provides a sparklyr extension that enables reading and writing TensorFlow TFRecord files via Apache Spark'.
This package provides methods for spatial risk calculations, focusing on efficient determination of the sum of observations within a circle of a given radius. These methods are particularly relevant for applications such as insurance, where recent European Commission regulations require the calculation of the maximum insured value of fire risk policies for all buildings that are partly or fully located within a 200 m radius. The underlying problem is described by Church (1974) <doi:10.1007/BF01942293>.
This package provides an XY pad input for the Shiny framework. An XY pad is like a bivariate slider. It allows to pick up a pair of numbers.
Implementations of stochastic, limited-memory quasi-Newton optimizers, similar in spirit to the LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm, for smooth stochastic optimization. Implements the following methods: oLBFGS (online LBFGS) (Schraudolph, N.N., Yu, J. and Guenter, S., 2007 <http://proceedings.mlr.press/v2/schraudolph07a.html>), SQN (stochastic quasi-Newton) (Byrd, R.H., Hansen, S.L., Nocedal, J. and Singer, Y., 2016 <arXiv:1401.7020>), adaQN (adaptive quasi-Newton) (Keskar, N.S., Berahas, A.S., 2016, <arXiv:1511.01169>). Provides functions for easily creating R objects with partial_fit/predict methods from some given objective/gradient/predict functions. Includes an example stochastic logistic regression using these optimizers. Provides header files and registered C routines for using it directly from C/C++.
Regression inference for multiple populations by integrating summary-level data using stacked imputations. Gu, T., Taylor, J.M.G. and Mukherjee, B. (2021) A synthetic data integration framework to leverage external summary-level information from heterogeneous populations <arXiv:2106.06835>.
This package implements functions for working with absorbing Markov chains. The implementation is based on the framework described in "Toward a unified framework for connectivity that disentangles movement and mortality in space and time" by Fletcher et al. (2019) <doi:10.1111/ele.13333>, which applies them to spatial ecology. This framework incorporates both resistance and absorption with spatial absorbing Markov chains (SAMC) to provide several short-term and long-term predictions for metrics related to connectivity in landscapes. Despite the ecological context of the framework, this package can be used in any application of absorbing Markov chains.
Spatiotemporal individual-level model of seasonal infectious disease transmission within the Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) framework are applied to model seasonal infectious disease transmission. This package employs a likelihood based Monte Carlo Expectation Conditional Maximization (MCECM) algorithm for estimating model parameters. In addition to model fitting and parameter estimation, the package offers functions for calculating AIC using real pandemic data and conducting simulation studies customized to user-specified model configurations.
Data sets and code blocks for the book Statistical Analysis of Network Data with R, 2nd Edition'.
This package contains functions to perform various models and methods for test equating (Kolen and Brennan, 2014 <doi:10.1007/978-1-4939-0317-7> ; Gonzalez and Wiberg, 2017 <doi:10.1007/978-3-319-51824-4> ; von Davier et. al, 2004 <doi:10.1007/b97446>). It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.
Latent repeated measures ANOVA (L-RM-ANOVA) is a structural equation modeling based alternative to traditional repeated measures ANOVA. L-RM-ANOVA extends the latent growth components approach by Mayer et al. (2012) <doi:10.1080/10705511.2012.713242> and introduces latent variables to repeated measures analysis.
This package provides modular functions and applications for quickly generating plots and tables. Each modular function opens a graphical user interface providing the user with options to create and customise plots and tables.