Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of matrix mathematics wherein operations are performed "by name.".
Our approach uses a mixture of multilayer stochastic block models to group co-membership matrices with similar information into components and to partition observations into different clusters. See De Santiago (2023, ISBN: 978-2-87587-088-9).
This package contains the MultiFractal Detrended Fluctuation Analysis (MFDFA), MultiFractal Detrended Cross-Correlation Analysis (MFXDFA), and the Multiscale Multifractal Analysis (MMA). The MFDFA() function proposed in this package was used in Laib et al. (<doi:10.1016/j.chaos.2018.02.024> and <doi:10.1063/1.5022737>). See references for more information. Interested users can find a parallel version of the MFDFA() function on GitHub.
Conducts and visualizes propensity score analysis for multilevel, or clustered data. Bryer & Pruzek (2011) <doi:10.1080/00273171.2011.636693>.
Handy helper package for cross-referencing lake identifiers among different data sets in the Midwestern United States. There are multiple different state, regional, and federal agencies that have different identifiers on lakes. This package helps you to go between them.
Efficient procedures for computing a new Multi-Class Sparse Discriminant Analysis method that estimates all discriminant directions simultaneously. It is an implementation of the work proposed by Mai, Q., Yang, Y., and Zou, H. (2019) <doi:10.5705/ss.202016.0117>.
Mitteroecker & Gunz (2009) <doi:10.1007/s11692-009-9055-x> describe how geometric morphometric methods allow researchers to quantify the size and shape of physical biological structures. We provide tools to extend geometric morphometric principles to the study of non-physical structures, hormone profiles, as outlined in Ehrlich et al (2021) <doi:10.1002/ajpa.24514>. Easily transform daily measures into multivariate landmark-based data. Includes custom functions to apply multivariate methods for data exploration as well as hypothesis testing. Also includes shiny web app to streamline data exploration. Developed to study menstrual cycle hormones but functions have been generalized and should be applicable to any biomarker over any time period.
Conduct multi-locus genome-wide association study under the framework of multi-locus random-SNP-effect mixed linear model (mrMLM). First, each marker on the genome is scanned. Bonferroni correction is replaced by a less stringent selection criterion for significant test. Then, all the markers that are potentially associated with the trait are included in a multi-locus genetic model, their effects are estimated by empirical Bayes, and all the nonzero effects were further identified by likelihood ratio test for significant QTL. The program may run on a desktop or laptop computers. If marker genotypes in association mapping population are almost homozygous, these methods in this software are very effective. If there are many heterozygous marker genotypes, the IIIVmrMLM software is recommended. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2018, <doi:10.1093/bib/bbw145>), and Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH, Zuo JF, Zhang HQ, Chen Y, Zhang YM (2022, <doi:10.1016/j.molp.2022.02.012>).
This package provides a generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <doi:10.48550/arXiv.1911.04927>.
This package provides a set of functions which use the Expectation Maximisation (EM) algorithm (Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x> Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, 39(1), 1--22) to take a finite mixture model approach to clustering. The package is designed to cluster multivariate data that have categorical and continuous variables and that possibly contain missing values. The method is described in Hunt, L. and Jorgensen, M. (1999) <doi:10.1111/1467-842X.00071> Australian & New Zealand Journal of Statistics 41(2), 153--171 and Hunt, L. and Jorgensen, M. (2003) <doi:10.1016/S0167-9473(02)00190-1> Mixture model clustering for mixed data with missing information, Computational Statistics & Data Analysis, 41(3-4), 429--440.
Two novel matching-based methods for estimating group average treatment effects (GATEs). The match_y1y0() and match_y1y0_bc() functions are used for imputing the potential outcomes based on matching and bias-corrected matching techniques, respectively. The EstGATE() function is employed to estimate the GATE after imputing the potential outcomes.
This package provides a supervised learning algorithm inputs a train set, and outputs a prediction function, which can be used on a test set. If each data point belongs to a subset (such as geographic region, year, etc), then how do we know if subsets are similar enough so that we can get accurate predictions on one subset, after training on Other subsets? And how do we know if training on All subsets would improve prediction accuracy, relative to training on the Same subset? SOAK, Same/Other/All K-fold cross-validation, <doi:10.48550/arXiv.2410.08643> can be used to answer these questions, by fixing a test subset, training models on Same/Other/All subsets, and then comparing test error rates (Same versus Other and Same versus All). Also provides code for estimating how many train samples are required to get accurate predictions on a test set.
An implementation of the mixed neighbourhood selection (MNS) algorithm. The MNS algorithm can be used to estimate multiple related precision matrices. In particular, the motivation behind this work was driven by the need to understand functional connectivity networks across multiple subjects. This package also contains an implementation of a novel algorithm through which to simulate multiple related precision matrices which exhibit properties frequently reported in neuroimaging analysis.
Convert mouse genome positions between the build 39 physical map and the genetic map of Cox et al. (2009) <doi:10.1534/genetics.109.105486>.
Requires rooted phylogeny as input and creates a table of genera, their monophyly-status, which taxa cause problems in monophyly etc. Different information can be extracted from the output and a plot function allows visualization of the results in a number of ways. "MonoPhy: a simple R package to find and visualize monophyly issues." Schwery, O. & O'Meara, B.C. (2016) <doi:10.7717/peerj-cs.56>.
Electronic health records (EHR) linked with biorepositories are a powerful platform for translational studies. A major bottleneck exists in the ability to phenotype patients accurately and efficiently. Towards that end, we developed an automated high-throughput phenotyping method integrating International Classification of Diseases (ICD) codes and narrative data extracted using natural language processing (NLP). Specifically, our proposed method, called MAP (Map Automated Phenotyping algorithm), fits an ensemble of latent mixture models on aggregated ICD and NLP counts along with healthcare utilization. The MAP algorithm yields a predicted probability of phenotype for each patient and a threshold for classifying subjects with phenotype yes/no (See Katherine P. Liao, et al. (2019) <doi:10.1093/jamia/ocz066>.).
The current version of the MixSAL package allows users to generate data from a multivariate SAL distribution or a mixture of multivariate SAL distributions, evaluate the probability density function of a multivariate SAL distribution or a mixture of multivariate SAL distributions, and fit a mixture of multivariate SAL distributions using the Expectation-Maximization (EM) algorithm (see Franczak et. al, 2014, <doi:10.1109/TPAMI.2013.216>, for details).
Stand-alone HTTP capable R-package repository, that fully supports R's install.packages() and available.packages(). It also contains API endpoints for end-users to add/update packages. This package can supplement miniCRAN', which has functions for maintaining a local (partial) copy of CRAN'. Current version is bare-minimum without any access-control or much security.
Power of non-parametric Mann-Kendall test and Spearmanâ s Rho test is highly influenced by serially correlated data. To address this issue, trend tests may be applied on the modified versions of the time series data by Block Bootstrapping (BBS), Prewhitening (PW) , Trend Free Prewhitening (TFPW), Bias Corrected Prewhitening and Variance Correction Approach by calculating effective sample size. Mann, H. B. (1945).<doi:10.1017/CBO9781107415324.004>. Kendall, M. (1975). Multivariate analysis. Charles Griffin&Company Ltd,. sen, P. K. (1968).<doi:10.2307/2285891>. à nöz, B., & Bayazit, M. (2012) <doi:10.1002/hyp.8438>. Hamed, K. H. (2009).<doi:10.1016/j.jhydrol.2009.01.040>. Yue, S., & Wang, C. Y. (2002) <doi:10.1029/2001WR000861>. Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002) <doi:10.1002/hyp.1095>. Hamed, K. H., & Ramachandra Rao, A. (1998) <doi:10.1016/S0022-1694(97)00125-X>. Yue, S., & Wang, C. Y. (2004) <doi:10.1023/B:WARM.0000043140.61082.60>.
Maximum likelihood estimation for generalized linear mixed models via Monte Carlo EM. For a description of the algorithm see Brian S. Caffo, Wolfgang Jank and Galin L. Jones (2005) <DOI:10.1111/j.1467-9868.2005.00499.x>.
Multilevel models (mixed effects models) are the statistical tool of choice for analyzing multilevel data (Searle et al, 2009). These models account for the correlated nature of observations within higher level units by adding group-level error terms that augment the singular residual error of a standard OLS regression. Multilevel and mixed effects models often require specialized data pre-processing and further post-estimation derivations and graphics to gain insight into model results. The package presented here, mlmtools', is a suite of pre- and post-estimation tools for multilevel models in R'. Package implements post-estimation tools designed to work with models estimated using lme4''s (Bates et al., 2014) lmer() function, which fits linear mixed effects regression models. Searle, S. R., Casella, G., & McCulloch, C. E. (2009, ISBN:978-0470009598). Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014) <doi:10.18637/jss.v067.i01>.
An RStudio Addin wrapper for the mergen package. This package employs artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. This package makes it easier to use Large Language Models in your development environment by providing a chat-like interface, while also allowing you to inspect and execute the returned code.
Estimation of treatment hierarchies in network meta-analysis using a novel frequentist approach based on treatment choice criteria (TCC) and probabilistic ranking models, as described by Evrenoglou et al. (2024) <DOI:10.48550/arXiv.2406.10612>. The TCC are defined using a rule based on the smallest worthwhile difference (SWD). Using the defined TCC, the NMA estimates (i.e., treatment effects and standard errors) are first transformed into treatment preferences, indicating either a treatment preference (e.g., treatment A > treatment B) or a tie (treatment A = treatment B). These treatment preferences are then synthesized using a probabilistic ranking model, which estimates the latent ability parameter of each treatment and produces the final treatment hierarchy. This parameter represents each treatments ability to outperform all the other competing treatments in the network. Here the terms ability to outperform indicates the propensity of each treatment to yield clinically important and beneficial effects when compared to all the other treatments in the network. Consequently, larger ability estimates indicate higher positions in the ranking list.
Nonparametric estimation and inference for natural direct and indirect effects by Chan, Imai, Yam and Zhang (2016) <arXiv:1601.03501>.