Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The new QOI file format offers a very simple but efficient image compression algorithm. This package provides an easy and simple way to read, write and display bitmap images stored in the QOI (Quite Ok Image) format. It can read and write both files and in-memory raw vectors.
Translate SQL SELECT statements into lists of R expressions.
Compile R functions annotated with type and shape declarations for extremely fast performance and robust runtime type checking. Supports both just-in-time (JIT) and ahead-of-time (AOT) compilation. Compilation is performed by lowering R code to Fortran.
This package provides the function qqtest which incorporates uncertainty in its qqplot display(s) so that the user might have a better sense of the evidence against the specified distributional hypothesis. qqtest draws a quantile quantile plot for visually assessing whether the data come from a test distribution that has been defined in one of many ways. The vertical axis plots the data quantiles, the horizontal those of a test distribution. The default behaviour generates 1000 samples from the test distribution and overlays the plot with shaded pointwise interval estimates for the ordered quantiles from the test distribution. A small number of independently generated exemplar quantile plots can also be overlaid. Both the interval estimates and the exemplars provide different comparative information to assess the evidence provided by the qqplot for or against the hypothesis that the data come from the test distribution (default is normal or gaussian). Finally, a visual test of significance (a lineup plot) can also be displayed to test the null hypothesis that the data come from the test distribution.
This package performs tuning of clustering models, methods and algorithms including the problem of determining an appropriate number of clusters. Validation of cluster analysis results is performed via quadratic scoring using resampling methods, as in Coraggio, L. and Coretto, P. (2023) <doi:10.1016/j.jmva.2023.105181>.
This package provides a collection of functions for constructing large pairwised comparisons and rating them using Elo rating system with supporting parallel processing. The method of random sample pairs is based on Reservoir Sampling proposed by JVitter (1985) <doi:10.1145/3147.3165>.
This package provides a collection of text analysis dictionaries and word lists for use with the qdap package.
These functions use data augmentation and Bayesian techniques for the assessment of single-member and incomplete ensembles of climate projections. It provides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables. It additionally propagates uncertainty due to missing information in the estimates. - Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie. (2019) <doi:10.1175/JCLI-D-18-0606.1>.
Molecular descriptors and outcomes for several public domain data sets.
This package provides functions to Simultaneously Infer Causal Graphs and Genetic Architecture. Includes acyclic and cyclic graphs for data from an experimental cross with a modest number (<10) of phenotypes driven by a few genetic loci (QTL). Chaibub Neto E, Keller MP, Attie AD, Yandell BS (2010) Causal Graphical Models in Systems Genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics 4: 320-339. <doi:10.1214/09-AOAS288>.
Implementation of a computationally efficient method for simulating queues with arbitrary arrival and service times. Please see Ebert, Wu, Mengersen & Ruggeri (2020, <doi:10.18637/jss.v095.i05>) for further details.
Quality of care is compared across accountable entities, including hospitals, provider groups, and insurance plans, using standardized quality measures. However, observed variations in quality measure performance might be the result of chance sampling or measurement errors. Contains functions for estimating the reliability of unadjusted and risk-standardized quality measures.
Routines in qtl2 to study allele patterns in quantitative trait loci (QTL) mapping over a chromosome. Useful in crosses with more than two alleles to identify how sets of alleles, genetically different strands at the same locus, have different response levels. Plots show profiles over a chromosome. Can handle multiple traits together. See <https://github.com/byandell/qtl2pattern>.
Produce quantile-based box-and-whisker plot(s).
This package provides functions for making run charts [Anhoej, Olesen (2014) <doi:10.1371/journal.pone.0113825>] and basic Shewhart control charts [Mohammed, Worthington, Woodall (2008) <doi:10.1136/qshc.2004.012047>] for measure and count data. The main function, qic(), creates run and control charts and has a simple interface with a rich set of options to control data analysis and plotting, including options for automatic data aggregation by subgroups, easy analysis of before-and-after data, exclusion of one or more data points from analysis, and splitting charts into sequential time periods. Missing values and empty subgroups are handled gracefully.
The computation of quadratic form (QF) distributions is often not trivial and it requires numerical routines. The package contains functions aimed at evaluating the exact distribution of quadratic forms (QFs) and ratios of QFs. In particular, we propose to evaluate density, quantile and distribution functions of positive definite QFs and ratio of independent positive QFs by means of an algorithm based on the numerical inversion of Mellin transforms.
This package provides functions for estimating the potential dispersal of tree species using regeneration densities and dispersal distances to nearest seed trees. A quantile regression is implemented to determine the dispersal potential. Spatial prediction can be used to identify natural regeneration potential for forest restoration as described in Axer et al (2021) <doi:10.1016/j.foreco.2020.118802>.
An implementation of dimension reduction techniques for conditional quantiles. Nonparametric estimation of conditional quantiles is also available.
Given inputs A,B and C, this package solves the matrix equation A*X^2 - B*X - C = 0.
Based on Alan D. Hutson (1999) <doi:10.1080/02664769922458>, "Calculating nonparametric confidence intervals for quantiles using fractional order statistics", Journal of Applied Statistics, 26:3, 343-353.
Functionality for generating (randomized) quasi-random numbers in high dimensions.
Construct message-passing style objects with types and features. Q7 types uses composition instead of inheritance in creating derived types, allowing defining any code segment as feature and associating any feature to any object. Compared to R6, Q7 is simpler and more flexible, and is more friendly in syntax.
Support package for the textbook "An Introduction to Quantitative Text Analysis for Linguists: Reproducible Research Using R" (Francom, 2024) <doi:10.4324/9781003393764>. Includes functions to acquire, clean, and analyze text data as well as functions to document and share the results of text analysis. The package is designed to be used in conjunction with the book, but can also be used as a standalone package for text analysis.
Function that implements the Quantum Genetic Algorithm, first proposed by Han and Kim in 2000. This is an R implementation of the python application developed by Lahoz-Beltra (<https://github.com/ResearchCodesHub/QuantumGeneticAlgorithms>). Each optimization problem is represented as a maximization one, where each solution is a sequence of (qu)bits. Following the quantum paradigm, these qubits are in a superposition state: when measuring them, they collapse in a 0 or 1 state. After measurement, the fitness of the solution is calculated as in usual genetic algorithms. The evolution at each iteration is oriented by the application of two quantum gates to the amplitudes of the qubits: (1) a rotation gate (always); (2) a Pauli-X gate (optionally). The rotation is based on the theta angle values: higher values allow a quicker evolution, and lower values avoid local maxima. The Pauli-X gate is equivalent to the classical mutation operator and determines the swap between alfa and beta amplitudes of a given qubit. The package has been developed in such a way as to permit a complete separation between the engine, and the particular problem subject to combinatorial optimization.