Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods for statistical analysis of count data and quantal data. For the analysis of count data an implementation of the Closure Principle Computational Approach Test ("CPCAT") is provided (Lehmann, R et al. (2016) <doi:10.1007/s00477-015-1079-4>), as well as an implementation of a "Dunnett GLM" approach using a Quasi-Poisson regression (Hothorn, L, Kluxen, F (2020) <doi:10.1101/2020.01.15.907881>). For the analysis of quantal data an implementation of the Closure Principle Fisherâ Freemanâ Halton test ("CPFISH") is provided (Lehmann, R et al. (2018) <doi:10.1007/s00477-017-1392-1>). P-values and no/lowest observed (adverse) effect concentration values are calculated. All implemented methods include further functions to evaluate the power and the minimum detectable difference using a bootstrapping approach.
Empirical adjustment of the distribution of variables originating from (regional) climate model simulations using quantile mapping.
This package provides a set of functions of increasing complexity allows users to (1) convert QuadKey-identified datasets, based on Microsoft's Bing Maps Tile System', into Simple Features data frames, (2) transform Simple Features data frames into rasters, and (3) process multiple Meta ('Facebook') QuadKey-identified human mobility files directly into raster files. For more details, see Dâ Andrea et al. (2024) <doi:10.21105/joss.06500>.
Create quantile binned and conditional plots for Exploratory Data Analysis. The package provides several plotting functions that are all based on quantile binning. The plots are created with ggplot2 and patchwork and can be further adjusted.
Calculates the right-tail probability of quadratic forms of Gaussian variables using the skewness-kurtosis ratio matching method, modified Liu-Tang-Zhang method and Satterthwaite-Welch method. The technical details can be found in Hong Zhang, Judong Shen and Zheyang Wu (2020) <arXiv:2005.00905>.
This package provides a Quantile Rank-score based test for the identification of expression quantitative trait loci.
Mortality rates are typically provided in an abridged format, i.e., by age groups 0, [1, 5], [5, 10]', [10, 15]', and so on. Some applications necessitate a detailed (single) age description. Despite the large number of proposed approaches in the literature, only a few methods ensure great performance at both younger and higher ages. For example, the 6-term Lagrange interpolation function is well suited to mortality interpolation at younger ages (with irregular intervals), but not at older ages. The Karup-King method, on the other hand, performs well at older ages but is not suitable for younger ones. Interested readers can find a full discussion of the two stated methods in the book Shryock, Siegel, and Associates (1993).The Q2q package combines the two methods to allow for the interpolation of mortality rates across all age groups. It begins by implementing each method independently, and then the resulting curves are linked using a 5-age averaged error between the two partial curves.
General purpose toolbox for simulating quantum versions of game theoretic models (Flitney and Abbott 2002) <arXiv:quant-ph/0208069>. Quantum (Nielsen and Chuang 2010, ISBN:978-1-107-00217-3) versions of models that have been handled are: Penny Flip Game (David A. Meyer 1998) <arXiv:quant-ph/9804010>, Prisoner's Dilemma (J. Orlin Grabbe 2005) <arXiv:quant-ph/0506219>, Two Person Duel (Flitney and Abbott 2004) <arXiv:quant-ph/0305058>, Battle of the Sexes (Nawaz and Toor 2004) <arXiv:quant-ph/0110096>, Hawk and Dove Game (Nawaz and Toor 2010) <arXiv:quant-ph/0108075>, Newcomb's Paradox (Piotrowski and Sladkowski 2002) <arXiv:quant-ph/0202074> and Monty Hall Problem (Flitney and Abbott 2002) <arXiv:quant-ph/0109035>.
This package implements the Bayesian quantile regression model for binary longitudinal data (QBLD) developed in Rahman and Vossmeyer (2019) <DOI:10.1108/S0731-90532019000040B009>. The model handles both fixed and random effects and implements both a blocked and an unblocked Gibbs sampler for posterior inference.
Developed to perform the estimation and inference for regression coefficient parameters in longitudinal marginal models using the method of quadratic inference functions. Like generalized estimating equations, this method is also a quasi-likelihood inference method. It has been showed that the method gives consistent estimators of the regression coefficients even if the correlation structure is misspecified, and it is more efficient than GEE when the correlation structure is misspecified. Based on Qu, A., Lindsay, B.G. and Li, B. (2000) <doi:10.1093/biomet/87.4.823>.
Finding hidden clusters in structured data can be hindered by the presence of masking variables. If not detected, masking variables are used to calculate the overall similarities between units, and therefore the cluster attribution is more imprecise. The algorithm q-vars implements an optimization method to find the variables that most separate units between clusters. In this way, masking variables can be discarded from the data frame and the clustering is more accurate. Tests can be found in Benati et al.(2017) <doi:10.1080/01605682.2017.1398206>.
Fit quantile regression neural network models with optional left censoring, partial monotonicity constraints, generalized additive model constraints, and the ability to fit multiple non-crossing quantile functions following Cannon (2011) <doi:10.1016/j.cageo.2010.07.005> and Cannon (2018) <doi:10.1007/s00477-018-1573-6>.
This package implements the Quantitative Classification-based on Association Rules (QCBA) algorithm (<doi:10.1007/s10489-022-04370-x>). QCBA postprocesses rule classification models making them typically smaller and in some cases more accurate. Supported are CBA implementations from rCBA', arulesCBA and arc packages, and CPAR', CMAR', FOIL2 and PRM implementations from arulesCBA package and SBRL implementation from the sbrl package. The result of the post-processing is an ordered CBA-like rule list.
This package provides functions for simulation, estimation, and model selection of finite mixtures of Tukey g-and-h distributions.
Values different types of assets and calibrates discount curves for quantitative financial analysis. It covers fixed coupon assets, floating note assets, interest and cross currency swaps with different payment frequencies. Enables the calibration of spot, instantaneous forward and basis curves, making it a powerful tool for accurate and flexible bond valuation and curve generation. The valuation and calibration techniques presented here are consistent with industry standards and incorporates author's own calculations. Tuckman, B., Serrat, A. (2022, ISBN: 978-1-119-83555-4).
This package provides a shiny application for teaching introductory quantitative genetics and plant breeding through interactive simulations. The application relies on established plant breeding and quantitative genetic theory found in Falconer and Mackay (1996, ISBN:0582243025) and Bernardo (2010, ISBN:978-0972072427).
Nonlinear and Penalized parametric modeling of quantile regression coefficient functions. Sottile G, Frumento P, Chiodi M and Bottai M (2020) <doi:10.1177/1471082X19825523>.
Automatic generation of maximally distinct qualitative color palettes, optionally tailored to color deficiency. A set of colors or a subspace of a color space is used as input and a final palette of specified size is generated by picking colors that maximize the minimum pairwise difference among the chosen colors. Adaptations to color vision deficiency, background colors, and white points are supported.
Full text, in data frames containing one row per verse, of the Qur'an in Arabic (with and without vowels) and in English (the Yusuf Ali and Saheeh International translations), formatted to be convenient for text analysis.
This package provides functions to manipulate dates and count days for quantitative finance analysis. The quantdates package considers leap, holidays and business days for relevant calendars in a financial context to simplify quantitative finance calculations, consistent with International Swaps and Derivatives Association (ISDA) (2006) <https://www.isda.org/book/2006-isda-definitions/> regulations.
This package provides a tool that can be customized to aid in the clean up of ecological data collected using quadrats and can crop quadrats to ensure comparability between quadrats collected under different methodologies.
This package provides a high-level wrapper that simplifies text classification into three streamlined steps: preprocessing, model training, and prediction. It unifies the interface for multiple algorithms (including glmnet', ranger', and xgboost') and vectorization methods (Bag-of-Words, Term Frequency-Inverse Document Frequency (TF-IDF)), allowing users to go from raw text to a trained sentiment model in two function calls. The resulting model artifact automatically handles preprocessing for new datasets in the third step, ensuring consistent prediction pipelines.
This package provides functions for constructing near-optimal generalized full matching. Generalized full matching is an extension of the original full matching method to situations with more intricate study designs. The package is made with large data sets in mind and derives matches more than an order of magnitude quicker than other methods.
Primarily, the qcv package computes key indices related to the Quantifying Construct Validity procedure (QCV; Westen & Rosenthal, 2003 <doi:10.1037/0022-3514.84.3.608>; see also Furr & Heuckeroth, in press). The qcv() function is the heart of the qcv package, but additional functions in the package provide useful ancillary information related to the QCV procedure.