Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Goodness-of-fit tests for selection of r in the r-largest order statistics (GEVr) model. Goodness-of-fit tests for threshold selection in the Generalized Pareto distribution (GPD). Random number generation and density functions for the GEVr distribution. Profile likelihood for return level estimation using the GEVr and Generalized Pareto distributions. P-value adjustments for sequential, multiple testing error control. Non-stationary fitting of GEVr and GPD. Bader, B., Yan, J. & Zhang, X. (2016) <doi:10.1007/s11222-016-9697-3>. Bader, B., Yan, J. & Zhang, X. (2018) <doi:10.1214/17-AOAS1092>.
This package provides a collection of epidemic/network-related tools. Simulates transmission of diseases through contact networks. Performs Bayesian inference on network and epidemic parameters, given epidemic data.
If translate English or Chinese sentence, there is a faster way for R user. You can pass in an English or Chinese sentence, ecce package support both English and Chinese translation. It also support browse translation results in website. In addition, also support obtain the pinyin of the Chinese character, you can more easily understand the pronunciation of the Chinese character.
Computes alpha and beta diversity metrics using concurrent C threads. Metrics include UniFrac', Faith's phylogenetic diversity, Bray-Curtis dissimilarity, Shannon diversity index, and many others. Also parses newick trees into phylo objects and rarefies feature tables.
The amplitude-dependent exponential autoregressive (EXPAR) time series model, initially proposed by Haggan and Ozaki (1981) <doi:10.2307/2335819> has been implemented in this package. Throughout various studies, the model has been found to adequately capture the cyclical nature of datasets. Parameter estimation of such family of models has been tackled by the approach of minimizing the residual sum of squares (RSS). Model selection among various candidate orders has been implemented using various information criteria, viz., Akaike information criteria (AIC), corrected Akaike information criteria (AICc) and Bayesian information criteria (BIC). An illustration utilizing data of egg price indices has also been provided.
This package provides functions are provided to determine production frontiers and technical efficiency measures through non-parametric techniques based upon regression trees. The package includes code for estimating radial input, output, directional and additive measures, plotting graphical representations of the scores and the production frontiers by means of trees, and determining rankings of importance of input variables in the analysis. Additionally, an adaptation of Random Forest by a set of individual Efficiency Analysis Trees for estimating technical efficiency is also included. More details in: <doi:10.1016/j.eswa.2020.113783>.
Survival analysis is employed to model time-to-event data. This package examines the relationship between survival and one or more predictors, termed as covariates, which can include both treatment variables (e.g., season of birth, represented by indicator functions) and continuous variables. To this end, the Cox-proportional hazard (Cox-PH) model, introduced by Cox in 1972, is a widely applicable and commonly used method for survival analysis. This package enables the estimation of the effect of randomization for the treatment variable to account for potential confounders, providing adjustment when estimating the association with exposure. It accommodates both fixed and time-dependent covariates and computes survival probabilities for lactation periods in dairy animals. The package is built upon the algorithm developed by Klein and Moeschberger (2003) <DOI:10.1007/b97377>.
This package provides a dataframe-friendly implementation of ComBat Harmonization which uses an empirical Bayesian framework to remove batch effects. Johnson WE & Li C (2007) <doi:10.1093/biostatistics/kxj037> "Adjusting batch effects in microarray expression data using empirical Bayes methods." Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnes M, Phillips ML, Trivedi MH, Weissman MM, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.11.024> "Harmonization of cortical thickness measurements across scanners and sites." Fortin J-P, Parker D, Tun<e7> B, Watanabe T, Elliott MA, Ruparel K, Roalf DR, Satterthwaite TD, Gur RC, Gur RE, Schultz RT, Verma R, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.08.047> "Harmonization of multi-site diffusion tensor imaging data.".
Gene information from Ensembl genome builds GRCh38.p14 and GRCh37.p13 to use with the topr package. The datasets were originally downloaded from <https://ftp.ensembl.org/pub/current/gtf/homo_sapiens/Homo_sapiens.GRCh38.111.gtf.gz> and <https://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz> and converted into the format required by the topr package. See <https://github.com/totajuliusd/topr?tab=readme-ov-file#how-to-use-topr-with-other-species-than-human> to see the required format.
This package creates graphs of species associations (interactions) and ordination biplots from co-occurrence data by fitting discrete gaussian copula graphical models. Methods described in Popovic, GC., Hui, FKC., Warton, DI., (2018) <doi:10.1016/j.jmva.2017.12.002>.
An implementation of extended state-space SIR models developed by Song Lab at UM school of Public Health. There are several functions available by 1) including a time-varying transmission modifier, 2) adding a time-dependent quarantine compartment, 3) adding a time-dependent antibody-immunization compartment. Wang L. (2020) <doi:10.6339/JDS.202007_18(3).0003>.
Support functions for R-based EQUAL-STATS software which automatically classifies the data and performs appropriate statistical tests. EQUAL-STATS software is a shiny application with an user-friendly interface to perform complex statistical analysis. Gurusamy,K (2024)<doi:10.5281/zenodo.13354162>.
An implementation of Extreme Bounds Analysis (EBA), a global sensitivity analysis that examines the robustness of determinants in regression models. The package supports both Leamer's and Sala-i-Martin's versions of EBA, and allows users to customize all aspects of the analysis.
Providing easy, portable access to NASA EarthData products through the use of bearer tokens. Much of NASA's public data catalogs hosted and maintained by its 12 Distributed Active Archive Centers ('DAACs') are now made available on the Amazon Web Services S3 storage. However, accessing this data through the standard S3 API is restricted to only to compute resources running inside us-west-2 Data Center in Portland, Oregon, which allows NASA to avoid being charged data egress rates. This package provides public access to the data from any networked device by using the EarthData login application programming interface (API), <https://www.earthdata.nasa.gov/data/earthdata-login>, providing convenient authentication and access to cloud-hosted NASA EarthData products. This makes access to a wide range of earth observation data from any location straight forward and compatible with R packages that are widely used with cloud native earth observation data (such as terra', sf', etc.).
Data for use with the Sage Introduction to Exponential Random Graph Modeling text by Jenine K. Harris. Network data set consists of 1283 local health departments and the communication links among them along with several attributes.
Checks to see whether a supplied set of dice (their face values) are transitive, returning pair-win and group-roll win probabilities. Expected returns (mean magnitude of win/loss) are presented as well.
Correlation chart of two set (x and y) of data. Using Quantiles. Visualize the effect of factor.
Endpoint selection and sample size reassessment for multiple binary endpoints based on blinded and/or unblinded data. Trial design that allows an adaptive modification of the primary endpoint based on blinded information obtained at an interim analysis. The decision rule chooses the endpoint with the lower estimated required sample size. Additionally, the sample size is reassessed using the estimated event probabilities and correlation between endpoints. The implemented design is proposed in Bofill Roig, M., Gómez Melis, G., Posch, M., and Koenig, F. (2022). <doi:10.48550/arXiv.2206.09639>.
Evidential regression analysis for dichotomous and quantitative outcome data. The following references described the methods in this package: Strug, L. J., Hodge, S. E., Chiang, T., Pal, D. K., Corey, P. N., & Rohde, C. (2010) <doi:10.1038/ejhg.2010.47>. Strug, L. J., & Hodge, S. E. (2006) <doi:10.1159/000094709>. Royall, R. (1997) <ISBN:0-412-04411-0>.
This package provides a set of procedures for parametric and non-parametric modelling of the dependence structure of multivariate extreme-values is provided. The statistical inference is performed with non-parametric estimators, likelihood-based estimators and Bayesian techniques. It adapts the methodologies of Beranger and Padoan (2015) <doi:10.48550/arXiv.1508.05561>, Marcon et al. (2016) <doi:10.1214/16-EJS1162>, Marcon et al. (2017) <doi:10.1002/sta4.145>, Marcon et al. (2017) <doi:10.1016/j.jspi.2016.10.004> and Beranger et al. (2021) <doi:10.1007/s10687-019-00364-0>. This package also allows for the modelling of spatial extremes using flexible max-stable processes. It provides simulation algorithms and fitting procedures relying on the Stephenson-Tawn likelihood as per Beranger at al. (2021) <doi:10.1007/s10687-020-00376-1>.
Forecasting univariate time series with different decomposition based time delay neural network models. For method details see Yu L, Wang S, Lai KK (2008). <doi:10.1016/j.eneco.2008.05.003>.
This package implements a simple, likelihood-based estimation of the reproduction number (R0) using a branching process with a Poisson likelihood. This model requires knowledge of the serial interval distribution, and dates of symptom onsets. Infectiousness is determined by weighting R0 by the probability mass function of the serial interval on the corresponding day. It is a simplified version of the model introduced by Cori et al. (2013) <doi:10.1093/aje/kwt133>.
The main aim is to further facilitate the creation of exercises based on the package exams by Grün, B., and Zeileis, A. (2009) <doi:10.18637/jss.v029.i10>. Creating effective student exercises involves challenges such as creating appropriate data sets and ensuring access to intermediate values for accurate explanation of solutions. The functionality includes the generation of univariate and bivariate data including simple time series, functions for theoretical distributions and their approximation, statistical and mathematical calculations for tasks in basic statistics courses as well as general tasks such as string manipulation, LaTeX/HTML formatting and the editing of XML task files for Moodle'.
This package contains all the datasets that were used in Social Science Experiments: A Hands-On Introduction and in its R Companion. Relevant materials can be found at <https://osf.io/b78je>.