Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.
When the response variable Y takes one of R > 1 values, the function glsm() computes the maximum likelihood estimates (MLEs) of the parameters under four models: null, complete, saturated, and logistic. It also calculates the log-likelihood values for each model. This method assumes independent, non-identically distributed variables. For grouped data with a multinomial outcome, where observations are divided into J populations, the function glsm() provides estimation for any number K of explanatory variables.
Allows user to choose/gate a region on the plot and returns points within it.
Estimation of partial correlation matrix using ridge penalty followed by thresholding and reestimation. Under multivariate Gaussian assumption, the matrix constitutes an Gaussian graphical model (GGM).
This package provides tools to adjust estimates of learning for guessing-related bias in educational and survey research. Implements standard guessing correction methods and a sophisticated latent class model that leverages informative pre-post test transitions to account for guessing behavior. The package helps researchers obtain more accurate estimates of actual learning when respondents may guess on closed-ended knowledge items. For theoretical background and empirical validation, see Cor and Sood (2018) <https://gsood.com/research/papers/guess.pdf>.
This package provides tools to set up, train, store, load, investigate and analyze generative neural networks. In particular, functionality for generative moment matching networks is provided.
To calculate the relative risk (RR) for the generalized additive model.
Extends ggplot2 functionality to the partykit package. ggparty provides the necessary tools to create clearly structured and highly customizable visualizations for tree-objects of the class party'.
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
This package provides functions for estimating a generalized partial linear model, a semiparametric variant of the generalized linear model (GLM) which replaces the linear predictor by the sum of a linear and a nonparametric function.
Simplify ggplot2 visualisation with ggblanket wrapper functions.
The genetic algorithm can be used directly to find the similarity of users and more effectively to increase the efficiency of the collaborative filtering method. By identifying the nearest neighbors to the active user, before the genetic algorithm, and by identifying suitable starting points, an effective method for user-based collaborative filtering method has been developed. This package uses an optimization algorithm (continuous genetic algorithm) to directly find the optimal similarities between active users (users for whom current recommendations are made) and others. First, by determining the nearest neighbor and their number, the number of genes in a chromosome is determined. Each gene represents the neighbor's similarity to the active user. By estimating the starting points of the genetic algorithm, it quickly converges to the optimal solutions. The positive point is the independence of the genetic algorithm on the number of data that for big data is an effective help in solving the problem.
Numerical integration with Gram polynomials (based on <arXiv:2106.14875> [math.NA] 28 Jun 2021, by Irfan Muhammad [School of Computer Science, University of Birmingham, UK]).
Load polar volume and vertical profile data for aeroecological research directly into R. With getRad you can access data from several sources in Europe and the US and standardize it to facilitate further exploration in tools such as bioRad'.
Allows users to quickly and easily generate fake data containing Personally Identifiable Information (PII) through convenience functions.
This package implements readers and writers for file formats associated with genetics data. Reading and writing Plink BED/BIM/FAM and GCTA binary GRM formats is fully supported, including a lightning-fast BED reader and writer implementations. Other functions are readr wrappers that are more constrained, user-friendly, and efficient for these particular applications; handles Plink and Eigenstrat tables (FAM, BIM, IND, and SNP files). There are also make functions for FAM and BIM tables with default values to go with simulated genotype data.
Command-line and shiny GUI implementation of the GenEst models for estimating bird and bat mortality at wind and solar power facilities, following Dalthorp, et al. (2018) <doi:10.3133/tm7A2>.
This package provides a function to retrieve the system timezone on Unix systems which has been found to find an answer when Sys.timezone() has failed. It is based on an answer by Duane McCully posted on StackOverflow', and adapted to be callable from R. The package also builds on Windows, but just returns NULL.
This package provides methods to calculate sensitivities of financial option prices for European, geometric and arithmetic Asian, and American options, with various payoff functions in the Black Scholes model, and in more general jump diffusion models. A shiny app to interactively plot the results is included. Furthermore, methods to compute implied volatilities are provided for a wide range of option types and custom payoff functions. Classical formulas are implemented for European options in the Black Scholes Model, as is presented in Hull, J. C. (2017), Options, Futures, and Other Derivatives. In the case of Asian options, Malliavin Monte Carlo Greeks are implemented, see Hudde, A. & Rüschendorf, L. (2023). European and Asian Greeks for exponential Lévy processes. <doi:10.1007/s11009-023-10014-5>. For American options, the Binomial Tree Method is implemented, as is presented in Hull, J. C. (2017).
Automated model selection and model-averaging. Provides a wrapper for glm and other functions, automatically generating all possible models (under constraints set by the user) with the specified response and explanatory variables, and finding the best models in terms of some Information Criterion (AIC, AICc or BIC). Can handle very large numbers of candidate models. Features a Genetic Algorithm to find the best models when an exhaustive screening of the candidates is not feasible.
This package provides a nonparametric empirical Bayes method for recovering gradients (or growth velocities) from observations of smooth functions (e.g., growth curves) at isolated time points.
This package provides a ggplot2 extension providing an integrative framework for composable visualization, enabling the creation of complex multi-plot layouts such as insets, circular arrangements, and multi-panel compositions. Built on the grammar of graphics, it offers tools to align, stack, and nest plots, simplifying the construction of richly annotated figures for high-dimensional data contextsâ such as genomics, transcriptomics, and microbiome studiesâ by making it easy to link related plots, overlay clustering results, or highlight shared patterns.
This package provides a series of aliases to commonly used but difficult to remember ggplot2 sequences.
Guild AI is an open-source tool for managing machine learning experiments. It's for scientists, engineers, and researchers who want to run scripts, compare results, measure progress, and automate machine learning workflow. Guild AI is a light weight, external tool that runs locally. It works with any framework, doesn't require any changes to your code, or access to any web services. Users can easily record experiment metadata, track model changes, manage experiment artifacts, tune hyperparameters, and share results. Guild AI combines features from Git', SQLite', and Make to provide a lab notebook for machine learning.