Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to fit Bayesian state-space models to animal tracking data. Models are provided for location filtering, location filtering and behavioural state estimation, and their hierarchical versions. The models are primarily intended for fitting to ARGOS satellite tracking data but options exist to fit to other tracking data types. For Global Positioning System data, consider the moveHMM package. Simplified Markov Chain Monte Carlo convergence diagnostic plotting is provided but users are encouraged to explore tools available in packages such as coda and boa'.
This package provides a complete toolkit for connecting R environments with Large Language Models (LLMs). Provides utilities for describing R objects, package documentation, and workspace state in plain text formats optimized for LLM consumption. Supports multiple workflows: interactive copy-paste to external chat interfaces, programmatic tool registration with ellmer chat clients, batteries-included chat applications via shinychat', and exposure to external coding agents through the Model Context Protocol. Project configuration files enable stable, repeatable conversations with project-specific context and preferred LLM settings.
Functional differences between the cerebral hemispheres are a fundamental characteristic of the human brain. Researchers interested in studying these differences often infer underlying hemispheric dominance for a certain function (e.g., language) from laterality indices calculated from observed performance or brain activation measures . However, any inference from observed measures to latent (unobserved) classes has to consider the prior probability of class membership in the population. The provided functions implement a Bayesian model for predicting hemispheric dominance from observed laterality indices (Sorensen and Westerhausen, Laterality: Asymmetries of Body, Brain and Cognition, 2020, <doi:10.1080/1357650X.2020.1769124>).
It is very common nowadays for a study to collect multiple features and appropriately integrating multiple longitudinal features simultaneously for defining individual clusters becomes increasingly crucial to understanding population heterogeneity and predicting future outcomes. BCClong implements a Bayesian consensus clustering (BCC) model for multiple longitudinal features via a generalized linear mixed model. Compared to existing packages, several key features make the BCClong package appealing: (a) it allows simultaneous clustering of mixed-type (e.g., continuous, discrete and categorical) longitudinal features, (b) it allows each longitudinal feature to be collected from different sources with measurements taken at distinct sets of time points (known as irregularly sampled longitudinal data), (c) it relaxes the assumption that all features have the same clustering structure by estimating the feature-specific (local) clusterings and consensus (global) clustering.
This package provides two main functions, il() and fil(). The il() function implements the EM algorithm developed by Ibrahim and Lipsitz (1996) <DOI:10.2307/2533068> to estimate the parameters of a logistic regression model with the missing response when the missing data mechanism is nonignorable. The fil() function implements the algorithm proposed by Maity et. al. (2017+) <https://github.com/arnabkrmaity/brlrmr> to reduce the bias produced by the method of Ibrahim and Lipsitz (1996) <DOI:10.2307/2533068>.
Adjust the Gamma regression models from a Bayesian perspective described by Cepeda and Urdinola (2012) <doi:10.1080/03610918.2011.600500>, modeling the parameters of mean and shape and using different link functions for the parameter associated to the mean. And calculates different adjustment statistics such as the Akaike information criterion and Bayesian information criterion.
Preprocessing tools and biodiversity measures (species abundance, species richness, population heterogeneity and sensitivity) for analysing marine benthic data. See Van Loon et al. (2015) <doi:10.1016/j.seares.2015.05.002> for an application of these tools.
Utility functions, datasets and extended examples for survival analysis. This extends a range of other packages, some simple wrappers for time-to-event analyses, datasets, and extensive examples in HTML with R scripts. The package also supports the course Biostatistics III entitled "Survival analysis for epidemiologists in R".
Visualizing the types and distribution of elements within bio-sequences. At the same time, We have developed a geom layer, geom_rrect(), that can generate rounded rectangles. No external references are used in the development of this package.
Extends blockr.core with interactive blocks for reading and writing data files. Supports CSV, Excel, Parquet, RDS, and other formats through a graphical interface without writing code directly. Includes file browser integration and configurable import/export options.
Generate ground truth cases for object localization algorithms. Cycle through a list of images, select points around which to generate bounding boxes and assign classifiers. Output the coordinates, and images annotated with boxes and labels. For an example study that uses bounding boxes for image localization and classification see Ibrahim, Badr, Abdallah, and Eissa (2012) "Bounding Box Object Localization Based on Image Superpixelization" <doi:10.1016/j.procs.2012.09.119>.
This package performs goodness of fit test for the Birnbaum-Saunders distribution and provides the maximum likelihood estimate and the method-of-moments estimate. For more details, see Park and Wang (2013) <arXiv:2308.10150>. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. 2022R1A2C1091319, RS-2023-00242528).
This package provides a ggplot2 centric approach to bivariate mapping. This is a technique that maps two quantities simultaneously rather than the single value that most thematic maps display. The package provides a suite of tools for calculating breaks using multiple different approaches, a selection of palettes appropriate for bivariate mapping and scale functions for ggplot2 calls that adds those palettes to maps. Tools for creating bivariate legends are also included.
Prevents and detects information leakage in biomedical machine learning. Provides leakage-resistant split policies (subject-grouped, batch-blocked, study leave-out, time-ordered), guarded preprocessing (train-only imputation, normalization, filtering, feature selection), cross-validated fitting with common learners, permutation-gap auditing, batch and fold association tests, and duplicate detection.
This package provides functions to access data from the BrasilAPI', REST Countries API', Nager.Date API', and World Bank API', related to Brazil's postal codes, banks, holidays, company registrations, international country indicators, public holidays information, and economic development data. Additionally, the package includes curated datasets related to Brazil, covering topics such as demographic data (males and females by state and year), river levels, environmental emission factors, film festivals, and yellow fever outbreak records. The package supports research and analysis focused on Brazil by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: BrasilAPI <https://brasilapi.com.br/>, Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
Time series regression using dynamic linear models fit using MCMC. See Scott and Varian (2014) <DOI:10.1504/IJMMNO.2014.059942>, among many other sources.
Bayesian estimation and variable selection for quantile regression models.
Generates different posterior distributions of adjusted odds ratio under different priors of sensitivity and specificity, and plots the models for comparison. It also provides estimations for the specifications of the models using diagnostics of exposure status with a non-linear mixed effects model. It implements the methods that are first proposed in <doi:10.1016/j.annepidem.2006.04.001> and <doi:10.1177/0272989X09353452>.
This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.
This package provides tools for conducting Bayesian analyses and Bayesian model averaging (Kass and Raftery, 1995, <doi:10.1080/01621459.1995.10476572>, Hoeting et al., 1999, <doi:10.1214/ss/1009212519>). The package contains functions for creating a wide range of prior distribution objects, mixing posterior samples from JAGS and Stan models, plotting posterior distributions, and etc... The tools for working with prior distribution span from visualization, generating JAGS and bridgesampling syntax to basic functions such as rng, quantile, and distribution functions.
Allows the reenactment of the R programs used in the book Bayesian Essentials with R without further programming. R code being available as well, they can be modified by the user to conduct one's own simulations. Marin J.-M. and Robert C. P. (2014) <doi:10.1007/978-1-4614-8687-9>.
This package provides a suite of Bayesian MI-LASSO for variable selection methods for multiply-imputed datasets. The package includes four Bayesian MI-LASSO models using shrinkage (Multi-Laplace, Horseshoe, ARD) and Spike-and-Slab (Spike-and-Laplace) priors, along with tools for model fitting via MCMC, four-step projection predictive variable selection, and hyperparameter calibration. Methods are suitable for both continuous and binary covariates under missing-at-random or missing-completely-at-random assumptions. See Zou, J., Wang, S. and Chen, Q. (2025), Bayesian MI-LASSO for Variable Selection on Multiply-Imputed Data. ArXiv, 2211.00114. <doi:10.48550/arXiv.2211.00114> for more details. We also provide the frequentist`s MI-LASSO function.
This package implements the distance measure for mixed-scale variables proposed by Buttler and Fickel (1995), based on normalized mean pairwise distances (Gini mean difference), and an R2 statistic to assess clustering quality.
Analysis workflow for finding geographic boundaries of ecological or landscape traits and comparing the placement of geographic boundaries of two traits. If data are trait values, trait data are transformed to boundary intensities based on approximate first derivatives across latitude and longitude. The package includes functions to create custom null models based on the input data. The boundary statistics are described in: Fortin, Drapeau, and Jacquez (1996) <doi:10.2307/3545584>.