Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides configurable progress bars. They may include percentage, elapsed time, and/or the estimated completion time. They work in terminals, in Emacs ESS, RStudio, Windows Rgui, and the macOS R.app. The package also provides a C++ API, that works with or without Rcpp.
This is a package for developers to check user-supplied function arguments. It is designed to be simple, fast and customizable. Error messages follow the tidyverse style guide.
This package provides an implementation of many measures for the assessment of the stability of feature selection. Both simple measures and measures which take into account the similarities between features are available.
This package provides an R tool for estimating and partitioning R2 in generalized linear mixed models (GLMMs) based on predictor variance.
This package implements the fast cross-validation via sequential testing (CVST) procedure. CVST is an improved cross-validation procedure which uses non-parametric testing coupled with sequential analysis to determine the best parameter set on linearly increasing subsets of the data. Additionally to the CVST the package contains an implementation of the ordinary k-fold cross-validation with a flexible and powerful set of helper objects and methods to handle the overall model selection process. The implementations of the Cochran's Q test with permutations and the sequential testing framework of Wald are generic and can therefore also be used in other contexts.
This package provides tools for the estimation and simulation of latent variable models.
Content-preserving transformations transformations of PDF files such as split, combine, and compress. This package interfaces directly to the qpdf C++ API and does not require any command line utilities. Note that qpdf does not read actual content from PDF files: to extract text and data you need the pdftools package.
High dimensional interaction search by brute force requires a quadratic computational cost in the number of variables. The xyz algorithm provably finds strong interactions in almost linear time. For details of the algorithm see: G. Thanei, N. Meinshausen and R. Shah (2016). The xyz algorithm for fast interaction search in high-dimensional data.
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the StanHeaders package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
The main function kcca implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.
This package provides interpretability methods to analyze the behavior and predictions of any machine learning model. Implemented methods are:
Feature importance described by Fisher et al. (2018),
accumulated local effects plots described by Apley (2018),
partial dependence plots described by Friedman (2001),
individual conditional expectation ('ice') plots described by Goldstein et al. (2013) https://doi.org/10.1080/10618600.2014.907095,
local models (variant of 'lime') described by Ribeiro et. al (2016),
the Shapley Value described by Strumbelj et. al (2014) https://doi.org/10.1007/s10115-013-0679-x,
feature interactions described by Friedman et. al https://doi.org/10.1214/07-AOAS148 and tree surrogate models.
This package provides a set of tools to facilitate package development and make R a more user-friendly place. It is intended mostly for developers (or anyone who writes/shares functions). It provides a simple, powerful and flexible way to check the arguments passed to functions. The developer can easily describe the type of argument needed. If the user provides a wrong argument, then an informative error message is prompted with the requested type and the problem clearly stated--saving the user a lot of time in debugging.
This package provides a collection of some tests commonly used for identifying outliers.
This package provides a Wrapper around the SVDLIBC library for (truncated) singular value decomposition of a sparse matrix. Currently, only sparse real matrices in Matrix package format are supported.
automap performs an automatic interpolation by automatically estimating the variogram and then calling gstat.
Recipes is an extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.
The Tweedie compound Poisson distribution is a mixture of a degenerate distribution at the origin and a continuous distribution on the positive real line. It has been applied in a wide range of fields in which continuous data with exact zeros regularly arise. The cplm package provides likelihood based and Bayesian procedures for fitting common Tweedie compound Poisson linear models. In particular, models with hierarchical structures or extra zero inflation can be handled. Further, the package implements the Gini index based on an ordered version of the Lorenz curve as a robust model comparison tool involving zero-inflated and highly skewed distributions.
This package provides a fast, scalable, and versatile framework for simulating large systems with Gillespie's Stochastic Simulation Algorithm (SSA). This package is the spiritual successor to the GillespieSSA package. Benefits of this package include major speed improvements (>100x), easier to understand documentation, and many unit tests that try to ensure the package works as intended.
This package provides the Open Source Geometry Engine (GEOS) as a C API that can be used to write high-performance C and C++ geometry operations using R as an interface. Headers are provided to make linking to and using these functions from C++ code as easy and as safe as possible. This package contains an internal copy of the GEOS library to guarantee the best possible consistency on multiple platforms.
This package lets you estimate fixed effects binary choice models (logit and probit) with potentially many individual fixed effects and compute average partial effects. Incidental parameter bias can be reduced with an asymptotic bias correction proposed by Fernandez-Val (2009) <doi:10.1016/j.jeconom.2009.02.007>.
This package helps you create simple maps; add sub-plots like pie plots to a map or any other plot; format, plot and export gridded data. The package was developed for displaying fisheries data but most functions can be used for more generic data visualisation.
This package proposes a new file format named gson for storing gene set and related information, and provides read, write and other utilities to process this file format.
This package provides a fast dimensionality reduction method scalable to large numbers of samples. Landmark Multi-Dimensional Scaling (LMDS) is an extension of classical Torgerson MDS, but rather than calculating a complete distance matrix between all pairs of samples, only the distances between a set of landmarks and the samples are calculated.
This package lets you create a reproducible ggplot2 object by storing the data and calls.