Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements graphical extension with accuracy in parameter estimation (AIPE) on RMSEA for sample size planning in structural equation modeling based on Lin, T.-Z. & Weng, L.-J. (2014) <doi: 10.1080/10705511.2014.915380>. And, it can also implement AIPE on RMSEA and power analysis on RMSEA.
Offers the Generalized Berk-Jones (GBJ) test for set-based inference in genetic association studies. The GBJ is designed as an alternative to tests such as Berk-Jones (BJ), Higher Criticism (HC), Generalized Higher Criticism (GHC), Minimum p-value (minP), and Sequence Kernel Association Test (SKAT). All of these other methods (except for SKAT) are also implemented in this package, and we additionally provide an omnibus test (OMNI) which integrates information from each of the tests. The GBJ has been shown to outperform other tests in genetic association studies when signals are correlated and moderately sparse. Please see the vignette for a quickstart guide or Sun and Lin (2017) <arXiv:1710.02469> for more details.
This package provides the following types of models: Models for contingency tables (i.e. log-linear models) Graphical Gaussian models for multivariate normal data (i.e. covariance selection models) Mixed interaction models. Documentation about gRim is provided by vignettes included in this package and the book by Højsgaard, Edwards and Lauritzen (2012, <doi:10.1007/978-1-4614-2299-0>); see citation("gRim") for details.
Density, distribution function, quantile function and random generation for the Generalized Gamma proposed in Stacy, E. W. (1962) <doi:10.1214/aoms/1177704481>.
This package provides functions for constructing Transformed and Relative Lorenz curves with survey sampling weights. Given a variable of interest measured in two groups with scaled survey weights so that their hypothetical populations are of equal size, tlorenz() computes the proportion of members of the group with smaller values (ordered from smallest to largest) needed for their sum to match the sum of the top qth percentile of the group with higher values. rlorenz() shows the fraction of the total value of the group with larger values held by the pth percentile of those in the group with smaller values. Fd() is a survey weighted cumulative distribution function and Eps() is a survey weighted inverse cdf used in rlorenz(). Ramos, Graubard, and Gastwirth (2025) <doi:10.1093/jrsssa/qnaf044>.
Método simples e eficiente de geolocalizar dados no Brasil. O pacote é baseado em conjuntos de dados espaciais abertos de endereços brasileiros, utilizando como fonte principal o Cadastro Nacional de Endereços para Fins Estatà sticos (CNEFE). O CNEFE é publicado pelo Instituto Brasileiro de Geografia e Estatà stica (IBGE), órgão oficial de estatà sticas e geografia do Brasil. (A simple and efficient method for geolocating data in Brazil. The package is based on open spatial datasets of Brazilian addresses, primarily using the Cadastro Nacional de Endereços para Fins Estatà sticos (CNEFE), published by the Instituto Brasileiro de Geografia e Estatà stica (IBGE), Brazil's official statistics and geography agency.).
In practical applications, the assumptions underlying generalized linear models frequently face violations, including incorrect specifications of the outcome variable's distribution or omitted predictors. These deviations can render the results of standard generalized linear models unreliable. As the sample size increases, what might initially appear as minor issues can escalate to critical concerns. To address these challenges, we adopt a permutation-based inference method tailored for generalized linear models. This approach offers robust estimations that effectively counteract the mentioned problems, and its effectiveness remains consistent regardless of the sample size.
An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search. Instead of giving the single best model, the final output is an ensemble of Gradient Boosted Trees constructed via the method of ensemble selection.
It gathers information, meta-data and scripts in a two-part Henry-Stewart talk by Zhao (2009, <doi:10.69645/DCRY5578>), which showcases analysis in aspects such as testing of polymorphic variant(s) for Hardy-Weinberg equilibrium, association with trait using genetic and statistical models as well as Bayesian implementation, power calculation in study design and genetic annotation. It also covers R integration with the Linux environment, GitHub, package creation and web applications.
Several yield stability analyses are mentioned in this package: variation and regression based yield stability analyses. Resampling techniques are integrated with these stability analyses. The function stab.mean() provides the genotypic means and ranks including their corresponding confidence intervals. The function stab.var() provides the genotypic variances over environments including their corresponding confidence intervals. The function stab.fw() is an extended method from the Finlay-Wilkinson method (1963). This method can include several other factors that might impact yield stability. Resampling technique is integrated into this method. A few missing data points or unbalanced data are allowed too. The function stab.fw.check() is an extended method from the Finlay-Wilkinson method (1963). The yield stability is evaluated via common check line(s). Resampling technique is integrated.
Generalized Linear Mixed Model (GLMM) for Binary Randomized Response Data. Includes Cauchit, Compl. Log-Log, Logistic, and Probit link functions for Bernoulli Distributed RR data. RR Designs: Warner, Forced Response, Unrelated Question, Kuk, Crosswise, and Triangular. Reference: Fox, J-P, Veen, D. and Klotzke, K. (2018). Generalized Linear Mixed Models for Randomized Responses. Methodology. <doi:10.1027/1614-2241/a000153>.
Data-driven approach for arriving at person-specific time series models. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. See Gates & Molenaar (2012) <doi:10.1016/j.neuroimage.2012.06.026>.
Allows users to fit a cosinor model using the glmmTMB framework. This extends on existing cosinor modeling packages, including cosinor and circacompare', by including a wide range of available link functions and the capability to fit mixed models. The cosinor model is described by Cornelissen (2014) <doi:10.1186/1742-4682-11-16>.
Streamlines downloading and cleaning biodiversity data from Integrated Digitized Biocollections (iDigBio) and the Global Biodiversity Information Facility (GBIF).
This package provides a tool to process and analyse data collected with wearable raw acceleration sensors as described in Migueles and colleagues (JMPB 2019), and van Hees and colleagues (JApplPhysiol 2014; PLoSONE 2015). The package has been developed and tested for binary data from GENEActiv <https://activinsights.com/>, binary (.gt3x) and .csv-export data from Actigraph <https://theactigraph.com> devices, and binary (.cwa) and .csv-export data from Axivity <https://axivity.com>. These devices are currently widely used in research on human daily physical activity. Further, the package can handle accelerometer data file from any other sensor brand providing that the data is stored in csv format. Also the package allows for external function embedding.
Interface for extra smooth functions including tensor products, neural networks and decision trees.
Fits generalized additive models for the location, scale and shape parameters of a generalized extreme value response distribution. The methodology is based on Rigby, R.A. and Stasinopoulos, D.M. (2005), <doi:10.1111/j.1467-9876.2005.00510.x> and implemented using functions from the gamlss package <doi:10.32614/CRAN.package.gamlss>.
Create groups of ggplot2 layers that can be easily migrated from one plot to another, reducing redundant code and improving the ability to format many plots that draw from the same source ggpacket layers.
This package contains five functions performing the calculation of unconditional and conditional Granger-causality spectra, bootstrap inference on both, and inference on the difference between them via the bootstrap approach of Farne and Montanari, 2018 <arXiv:1803.00374>.
Selective Sweep can be calculated by five significant Population Genetics Statistics such as "Pi", "Wattersons_theta", "Tajima_D", "Kelly_ZnS" and "Omega" Statistics in specified chromosomal region. It has been developed by using the concept of "Kern" and "Schrider" (2018)<doi:10.1534/g3.118.200262>.
This package implements a method of iteratively collapsing the rows of a contingency table, two at a time, by selecting the pair of categories whose combination yields a new table with the smallest loss of chi-squared, as described by Greenacre, M.J. (1988) <doi:10.1007/BF01901670>. The result is compatible with the class of object returned by the stats package's hclust() function and can be used similarly (plotted as a dendrogram, cut, etc.). Additional functions are provided for automatic cutting and diagnostic plotting.
Calculate different glucose variability measures, including average measures of glycemia, measures of glycemic variability and measures of glycemic risk, from continuous glucose monitoring data. Boris P. Kovatchev, Erik Otto, Daniel Cox, Linda Gonder-Frederick, and William Clarke (2006) <doi:10.2337/dc06-1085>. Jean-Pierre Le Floch, Philippe Escuyer, Eric Baudin, Dominique Baudon, and Leon Perlemuter (1990) <doi:10.2337/diacare.13.2.172>. C.M. McDonnell, S.M. Donath, S.I. Vidmar, G.A. Werther, and F.J. Cameron (2005) <doi:10.1089/dia.2005.7.253>. Everitt, Brian (1998) <doi:10.1111/j.1751-5823.2011.00149_2.x>. Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) <doi:10.2307/2234167>. Dougherty, R. L., Edelman, A. and Hyman, J. M. (1989) <doi:10.1090/S0025-5718-1989-0962209-1>. Tukey, J. W. (1977) <doi:10.1016/0377-2217(86)90209-2>. F. John Service (2013) <doi:10.2337/db12-1396>. Edmond A. Ryan, Tami Shandro, Kristy Green, Breay W. Paty, Peter A. Senior, David Bigam, A.M. James Shapiro, and Marie-Christine Vantyghem (2004) <doi:10.2337/diabetes.53.4.955>. F. John Service, George D. Molnar, John W. Rosevear, Eugene Ackerman, Leal C. Gatewood, William F. Taylor (1970) <doi:10.2337/diab.19.9.644>. Sarah E. Siegelaar, Frits Holleman, Joost B. L. Hoekstra, and J. Hans DeVries (2010) <doi:10.1210/er.2009-0021>. Gabor Marics, Zsofia Lendvai, Csaba Lodi, Levente Koncz, David Zakarias, Gyorgy Schuster, Borbala Mikos, Csaba Hermann, Attila J. Szabo, and Peter Toth-Heyn (2015) <doi:10.1186/s12938-015-0035-3>. Thomas Danne, Revital Nimri, Tadej Battelino, Richard M. Bergenstal, Kelly L. Close, J. Hans DeVries, SatishGarg, Lutz Heinemann, Irl Hirsch, Stephanie A. Amiel, Roy Beck, Emanuele Bosi, Bruce Buckingham, ClaudioCobelli, Eyal Dassau, Francis J. Doyle, Simon Heller, Roman Hovorka, Weiping Jia, Tim Jones, Olga Kordonouri,Boris Kovatchev, Aaron Kowalski, Lori Laffel, David Maahs, Helen R. Murphy, Kirsten Nørgaard, Christopher G.Parkin, Eric Renard, Banshi Saboo, Mauro Scharf, William V. Tamborlane, Stuart A. Weinzimer, and Moshe Phillip.International consensus on use of continuous glucose monitoring.Diabetes Care, 2017 <doi:10.2337/dc17-1600>.
Extensions to ggplot2 providing low-level debug tools: statistics and geometries echoing their data argument. Layer manipulation: deletion, insertion, extraction and reordering of layers. Deletion of unused variables from the data object embedded in "ggplot" objects.
This package provides tools for simulating from spatial modeling of individual level of infectious disease transmission when co-variates measured with error, and carrying out infectious disease data analyses with the same models. The epidemic models considered are distance-based model within Susceptible-Infectious-Removed (SIR) compartmental frameworks.